Gamma-aminobutyric acid (GABA), the inhibitory neurotransmitter, can be naturally synthesized by a group of lactic acid bacteria (LAB) which is commonly found in rich carbohydrate materials such as fruits and fermented foods. Thirty-six isolates of GABA-producing LAB were obtained from Thai fermented foods. Among these, Levilactobacillus brevis F064A isolated from Thai fermented sausage displayed high GABA content, 2.85 ± 0.10 mg/mL and could tolerate acidic pH and bile salts indicating a promising probiotic. Mulberry (Morus sp.) is widely grown in Thailand. Many mulberry fruits are left to deteriorate during the high season. To increase its value, mulberry juice was prepared and added to monosodium glutamate (MSG), 2% (w/v) prior to inoculation with 5% (v/v) of L. brevis F064A and incubated at 37 °C for 48 h to obtain the GABA-fermented mulberry juice (GABA-FMJ). The GABA-FMJ obtained had 3.31 ± 0.06 mg/mL of GABA content, 5.58 ± 0.52 mg gallic acid equivalent/mL of antioxidant activity, 234.68 ± 15.53 mg cyanidin-3-glucoside/mL of anthocyanin, an ability to inhibit growth of Bacillus cereus TISTR 687, Salmonella Typhi DMST 22842 and Shigella dysenteriae DMST 1511, and 10.54 ± 0.5 log10 colony-forming units (CFU)/mL of viable L. brevis F064A cell count. This GABA-FMJ was considered as a potential naturally functional food for human of all ages.
Bacterial cellulose (BC), a biopolymer, is synthesized by BC-producing bacteria. Almost all producing strains are classified in the family Acetobacteraceae. In this study, bacterial strain P285 was isolated from contaminated honey wine in a honey factory in northern Thailand. Based on 16S rRNA gene sequence identification, the strain P285 revealed 99.8% identity with Komagataeibacter mal-taceti LMG 1529 T. K. maltaceti P285 produced the maximum BC production at 20–30 °C and an initial media pH of 9.0. The highest BC production in modified mineral salt medium (MSM) was exhibited when glucose (16%, w/v) and yeast extract (3.2%, w/v) were applied as carbon and nitrogen sources, respectively. When sugarcane (8–16%, w/v) or honey (ratio of honey to water = 1: 4) supplemented with yeast extract was used, the BC production was greater. The characterization of BC synthesized by K. maltaceti P285 was undertaken using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometry. Meanwhile, X-ray diffraction results confirmed the presence of crystalline cellulose (2θ = 18.330, 21.390 and 22.640°). The maximum temperature of BC degradation was observed at 314 °C. Tensile properties analysis of hydrated and dried BC showed breaking strength of 1.49 and 0.66 MPa, respectively. These results demonstrated that K. maltaceti P285 has a high potential for BC production especially when grown in high initial media pH. Therefore, the strain would be suitable as an agent to make BC, the value-added product in the related factories.
Monobutyrin (MB) and monovalerin (MV), glycerol esters of short-chain fatty acids (SCFAs), have been shown to positively influence lipid profile and biomarkers in the gut and brain. This study examined whether MB and MV in high-fat diets, affected microbiota composition and gut–blood–brain markers in apolipoprotein E deficient (ApoE-/-) rats, a model for studies of lipid-associated disorders, and neurodegenerative processes in Alzheimer’s disease (AD). ApoE-/- rats fed MB and MV increased Tenericutes and the brain neurotransmitter γ-aminobutyric acid (GABA), while the blood stress hormone corticosterone decreased compared to control rats. Only rats that received MB showed a significant increase in cholic acid and Adlercreutzia in the caecum. In rats fed MV, the decrease of Proteobacteria was associated with decreased corticosterone levels. Conclusively, dietary supplementation of SCFA glycerol esters can modulate gut–blood–brain markers and alter gut microbiota composition in ApoE-/- rats, suggesting that SCFAs also could counteract lipid disorders-related diseases.
Gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, can be produced by lactic acid bacteria. Levilactobacillus brevis F064A, a high potential probiotic, is capable of producing GABA. To elucidate its glutamic acid decarboxylase (GAD) enzyme responsible for GABA production, partial gad genes were examined. It was found that both partial gadA and gadB genes were existing in L. brevis F064A genomes. Some infl uencing effects on GABA production by Levilactobacillus brevis F064A were determined. The highest GABA production of 4.18 ± 0.07 mg/mL was achieved with the optimal conditions of initial media pH of 5.5, 2% (w/v) of glucose, 2% (w/v) of monosodium glutamate (MSG) and 48 h at 37°C of incubation. Pyridoxal 5′-phosphate (PLP) had no effect on its GABA production. At 48 h of incubation, the viable cells were increased as well as the culture pH. Moreover, the optimum conditions based on the response surface methodology (RSM) model were pH of 5.26, 2.71% (w/v) of glucose and 2.96% (w/v) of MSG yielded 4.53 ± 0.08 mg/mL GABA content (p < 0.05). Additionally, total lactic acid of 10.30 ± 0.91 mg/mL was also produced. Promisingly, L. brevis F064A is a good candidate for GABA production and for functional food development in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.