Coffee pulp is one of the most underutilised by-products from coffee processing. For coffee growers, disposing of this agro-industrial biomass has become one of the most difficult challenges. This study utilised this potential biomass as raw material for polyphenolic antifungal agents. First, the proportion of biomass was obtained from the Arabica green bean processing. The yield of by-products was recorded, and the high-potency biomass was serially extracted with organic solvents for the polyphenol fraction. Quantification of the polyphenols was performed by High Performance Liquid Chromatography (HPLC), then further confirmed by mass spectrometry modes of the liquid chromatography–quadrupole time-of-flight (QTOF). Then, the fraction was used to test antifungal activities against Alternaria brassicicola, Pestalotiopsis sp. and Paramyrothecium breviseta. The results illustrated that caffeic acid and epigallocatechin gallate represented in the polyphenol fraction actively inhibited these fungi with an inhibitory concentration (IC50) of 0.09, 0.31 and 0.14, respectively. This study is also the first report on the alternative use of natural biocontrol agent of P. breviseta, the pathogen causing leaf spot in the Arabica coffee.
This research investigated volatile profiles of over-ripe Thai mango purée during thermal processing by solid-phase extraction, volatile quantification by XAD-2-solvent extraction, as well as descriptive sensory analysis. Overripe fruits of three varieties were analyzed for the ripening stage using specific gravity as well as firmness and the physiochemical properties were also reported. We found that aromatic profiles could be used as true representative to describe Thai mango identities of each varieties. A simple and straightforward heat treatment had differing effects on aroma characteristics and those effects were dependent with mango varieties. Indeed, the amount of terpene hydrocarbons and oxygenated sesquiterpenoids alternated after heat treatment. All descriptive attributes of heated ‘sam-pee’ purée were intensified while, heat treatment significantly improved only “mango identity” in ‘maha-chanok’ and “fermented” odour in ‘keaw’ purée. With or without heat treatment, the volatile profiles of ‘maha-chanok’ remained quite stable while heating played a significant role on chemical ingredients of ‘keaw’ and ‘sam-pee’. Our study demonstrated that the manufacturing of the over-ripe mango into the products of high market value, selection of varieties is vitally important based upon their specific aroma characteristics before and after processing.
The Sustainable Development Goals (SDGs) contribute to the improvement of production and consumption systems, hence, assisting in the eradication of hunger and poverty. As a result, there is growing global interest in the direction of economic development to create a zero-waste economy or circular economy. Citrus fruits are a major fruit crop, with annual global production surpassing 100 million tons, while orange and tangerine production alone account for more than half of the overall production. During pre- and postharvest stages of citrus fruit production, it is estimated that more than 20% of fruit biomass is lost, due, primarily, to biotic stresses. This review emphasizes causes of fruit losses by pathogenic caused diseases and proposes a bio-circular perspective in the production of citrus fruits. Due to substantial changes in fruit characteristics and environmental conditions, some of the most economically significant pathogens infect fruits in the field during the growing season and remain dormant or inactive until they resume growth after harvest. Peel biomass is the most significant by-product in citrus fruit production. This biomass is enriched with the value-adding essential oils and polysaccharides. For the complete bio-circular economy, these active ingredients can be utilized as citrus postharvest coating materials based upon their functional properties. The overall outreach of the approach not only reduces the amount of agricultural by-products and develops new applications for the pomology industry, it also promotes bio-circular green economic, which is in line with the SDGs for the citrus fruit industry.
In the current study, eleven sooty mold isolates were collected from different tropical host plants. The isolates were identified under Capnodium, Leptoxyphium and Trichomerium, based on morphology and phylogeny. For the secondary metabolite analysis, the isolates were grown on Potato Dextrose Broth (PDB). The well-grown mycelia were filtered and extracted over methanol (MeOH). The metabolites in the growth medium (or filtrate) were extracted over ethyl acetate (EtOAc). The antifungal activities of each crude extract were tested over Alternaria sp., Colletotrichum sp., Curvularia sp., Fusarium sp. and Pestalotiopsis sp. The metabolites were further tested for their total phenolic, flavonoid and protein content prior to their antioxidant and anti-fungal potential evaluation. The MeOH extracts of sooty molds were enriched with proteins and specifically inhibited Curvularia sp. The total phenolic content and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity was largely recovered from the filtrate corresponding to the inhibition of Alternaria sp.; while the flavonoid and free radical reduction suggested a relative induction of growth of the Fusarium sp., Colletotrichum sp. and Pestalotiopsis sp. Hence, this study reveals the diversity of sooty molds in Thailand by a modern phylogenetic approach. Furthermore, the preliminary screening of the isolates reveals the potential of finding novel compounds and providing insights for the future research on secondary metabolites of bio-trophic fungi and their potential usage on sustainable agriculture.
In the tropics, coffee has been one of the most extensively cultivated economic crops, especially Arabica coffee (Coffea arabica L.). The coffee pulp, which includes phytochemicals with a proven antifungal action, is one of the most insufficiently utilized and neglected byproducts of coffee refining. In the current experiment, we carried out in silico screening of the isolated Arabica coffee phytochemicals for antifungal activity against Aspergillus fumigatus: a foodborne fungus of great public health importance. As determined by the molecular docking interactions of the library compounds indicated, the best interactions were found to occur between the nucleoside-diphosphate kinase protein 6XP7 and the test molecules Naringin (−6.771 kcal/mol), followed by Epigallocatechin gallate (−5.687 kcal/mol). Therefore, Naringin was opted for further validation with molecular dynamic simulations. The ligand–protein complex RMSD indicated a fairly stable Naringin-NDK ligand–protein complex throughout the simulation period (2–16 Å). In ADME and gastrointestinal absorbability testing, Naringin was observed to be orally bioavailable, with very low intestinal absorption and a bioavailability score of 0.17. This was further supported by the boiled egg analysis data, which clearly indicated that the GI absorption of the Naringin molecule was obscure. We found that naringin could be harmful only when swallowed at a median lethal dose between 2000 and 5000 mg/kg. In accordance with these findings, the toxicity prediction reports suggested that Naringin, found especially in citrus fruits and tomatoes, is safe for human consumption after further investigation. Overall, Naringin may be an ideal candidate for developing anti-A. fumigatus treatments and food packaging materials. Thus, this study addresses the simultaneous problems of discarded coffee waste management and antifungal resistance to available medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.