Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.
Coxsackievirus A6, Thailand
Enterovirus A71 (EV-A71) is one of the common causative pathogens for hand foot and mouth disease (HFMD) affecting young children. HFMD outbreak can result in a substantial pediatric hospitalization and burden the healthcare services, especially in less-developed countries. Since the initial epidemic of predominantly EV-A71 in California in 1969, the high prevalence of HFMD in the Asia-pacific region and elsewhere around the world represents a significant morbidity in this age group. With the advent of rapid and accurate diagnostic tools, there has been a dramatic increase in the number of laboratory-confirmed EV-A71 infection over the past two decades. The population, cultural, and socioeconomic diversity among countries in the Asia-Pacific region all influence the transmission and morbidity associated with HFMD. This review summarizes the current state of epidemiology of EV-A71 in Asia-Pacific countries based on the most recent epidemiological data and available information on the prevalence and disease burden. This knowledge is important in guiding the prevention, control and future research on vaccine development of this highly contagious disease of significant socioeconomic implications in public health.
BackgroundPublications worldwide have reported on the re-occurrence of human enterovirus 68 (EV68), a rarely detected pathogen usually causing respiratory illness. However, epidemiological data regarding this virus in particular on the Asian continent has so far been limited.Methodology/FindingsWe investigated the epidemiology and genetic variability of EV68 infection among Thai children with respiratory illnesses from 2006–2011 (n = 1810). Semi-nested PCR using primer sets for amplification of the 5′-untranslated region through VP2 was performed for rhino-enterovirus detection. Altogether, 25 cases were confirmed as EV68 infection indicating a prevalence of 1.4% in the entire study population. Interestingly, the majority of samples were children aged >5 years (64%). Also, co-infection with other viruses was found in 28%, while pandemic H1N1 influenza/2009 virus was the most common co-infection. Of EV68-positive patients, 36% required hospitalizations with the common clinical presentations of fever, cough, dyspnea, and wheezing. The present study has shown that EV68 was extremely rare until 2009 (0.9%). An increasing annual prevalence was found in 2010 (1.6%) with the highest detection frequency in 2011 (4.3%). Based on analysis of the VP1 gene, the evolutionary rate of EV68 was estimated at 4.93×10−3 substitutions/site/year. Major bifurcation of the currently circulating EV68 strains occurred 66 years ago (1945.31 with (1925.95–1960.46)95% HPD). Among the current lineages, 3 clusters of EV68 were categorized based on the different molecular signatures in the BC and DE loops of VP1 combined with high posterior probability values. Each cluster has branched off from their common ancestor at least 36 years ago (1975.78 with (1946.13–1984.97)95% HPD).ConclusionDifferences in epidemiological characteristic and seasonal profile of EV68 have been found in this study. Results from Bayesian phylogenetic investigations also revealed that EV68 should be recognized as a genetically diverse virus with a substitution rate identical to that of enterovirus 71 genotype B (4.2×10−3 s/s/y).
Due to the common symptoms of COVID-19, patients are similar to influenza-like illness. Therefore, the detection method would be crucial to discriminate between SARS-CoV-2 and influenza virus-infected patients. In this study, CRISPR-Cas12a-based detection was applied for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus which would be a practical and attractive application for screening of patients with COVID-19 and influenza in areas with limited resources. The limit of detection for SARS-CoV-2, influenza A, and influenza B detection was 10, 103, and 103 copies/reaction, respectively. Moreover, the assays yielded no cross-reactivity against other respiratory viruses. The results revealed that the detection of influenza virus and SARS-CoV-2 by using RT-RPA and CRISPR-Cas12a technology reaches 96.23% sensitivity and 100% specificity for SARS-CoV-2 detection. The sensitivity for influenza virus A and B detections was 85.07% and 94.87%, respectively. In addition, the specificity for influenza virus A and B detections was approximately 96%. In conclusion, the RT-RPA with CRISPR-Cas12a assay was an effective method for the screening of influenza viruses and SARS-CoV-2 which could be applied to detect other infectious diseases in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.