Introduction: Influenza virus pneumonia and COVID-19 are two different types of respiratory viral pneumonia but with very similar clinical manifestations. The aim of the present study was to help clinicians gain a better understanding about differences between Influenza virus pneumonia and COVID-19 by comparative analysis of the early-stage clinical features. Methods: Clinical data of patients with confirmed diagnosis of COVID-19 and influenza A pneumonia identified in our hospital were collected and analyzed retrospectively to identify the clinical features that could differentiate between the two types of viral pneumonia. Results: The two types of viral pneumonia mainly affected adults, especially people over 50 years, with no gender difference between them. Fever, cough, sputum and muscle soreness were the most common symptoms of COVID-19. Some patients with COVID-19 may also exhibit digestive tract symptoms. Elevation of C-reactive protein (CRP) was a more common phenomenon in patients with COVID-19 than that in patients with influenza A H1N1 virus pneumonia. In addition, eosinophil count was decreased and the monocyte percentage was increased in COVID-19 patients. The grid-form shadow was a typical presentation of COVID-19 on the lung CT image, and the disease usually progressed quickly within a week. Conclusion: Influenza pneumonia and COVID-19 are two different types of respiratory viral pneumonia with very similar clinical manifestations. The percentage of monocytes is increased and the eosinophil count is decreased in COVID-19. Glass-ground density exudation shadow located peripherally is the typical sign of COVID-19 on the lung CT image, and the shadow often with grid-form sign. These features may not be typically observed in patients with influenza pneumonia. Chest CT scan combined with nucleic acid detection is an effective and accurate method for diagnosing COVID-19. Blood routine test has a limited diagnostic value in differentiating the two forms of pneumonia.
In this study, we investigated the time-course changes of hormone levels and sperm numbers in male Sprague-Dawley (SD) rats after neonatal exposure to 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169). Neonatal rats were given (through oral gavages) doses of 0, 0.025, 0.25, or 0.5 mg/kg-day of PCB169 in corn oil from postnatal day 1 (PND1) to PND7. The rats were sacrificed at PND8, PND21, and PND90. PCB169 exposure was confirmed by the marked induction of liver CYP1A1 mRNA expression at these three time points. The testicular daily sperm production and the sperm counts of the epididymis cauda significantly decreased at PND90 compared to that of control. Although reductions in serum thyroxine and triiodothyronine levels occurred at all these three time points and at both PND21 and PND90, respectively, the mRNA expression of testicular thyroid hormone receptor α1 was suppressed significantly only at PND8. The serum and testicular testosterone (T) levels declined markedly at PND90 compared to the controls, but there was no effect at PND21. The mRNA expression of testicular steroidogenic factor 1 was inhibited markedly at the three time points, whereas those of StAR, P450c17, P450scc, and 3β-HSD were suppressed significantly only at PND90 relative to the controls. PCB169 treatment had no effects on pituitary follicle-stimulating hormone and luteinizing hormone levels and on their receptors' expression in the testes. These results indicate that neonatal exposure to PCB169 damages hormone levels and testicular function in the long-term, resulting in persistent hypothyroidism and decreases in adult T levels and sperm counts.
Perfluorooctane sulfonate (PFOS) is widely used in industry; it is nonbiodegradable and persistent in the human body and in the environment. Although reports have indicated that young people might have higher PFOS levels in serum or blood than do older people, its adverse effects on neonatal testicular cells had not been investigated previously. PCB 153 is one of the most prevalent polychlorinated biphenyl (PCB) congeners in biological tissues, but the direct adverse effect of PCB 153 on neonatal testis remains unclear. In this study, we exposed a neonatal Sertoli cell/gonocyte coculture system to PFOS and PCB 153 individually at concentrations of 0, 1, 10, 50, and 100 μM for 24 h. Exposure to either compound reduced the cell viability and induced the production of reactive oxygen species (ROS) in dose-dependent manners, with PCB 153 having a greater effect than PFOS. Whereas PCB 153 induced apoptosis significantly from 10 μM, PFOS induced no obvious change. Morphologically, both PCB 153 and PFOS induced changes in the vimentin and actin filaments in the Sertoli cells, as investigated using confocal argon ion laser scanning microscopy; here, PFOS exhibited a more dramatic effect than did PCB 153. Furthermore, doses of 50 μM for PFOS and 10 μM for PCB 153 were the key concentrations that produced significant differences between the control and exposure groups. We suggest that both PCB 153 and PFOS directly affect neonatal gonocyte and Sertoli cells; the production of ROS and the change in the cytoskeleton in Sertoli cells might be causes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.