UV absorbers for treating cotton textiles with the aim of increased protection against harmful effects of UV component of solar radiation have been prepared by reactions of five different aminophenylsulfobenzotriazoles with the condensation product of 4-aminophenyl-sulfatoethylsulfone and cyanuric chloride. The UV absorbers with two different reactive groups (monochlorotriazine and aromatic vinylsulfone), capable of formation of covalent bonds with hydroxyl groups of cellulose, were applied to one cellophane foil and two cotton fabrics of different porosities. This treatment increased the ultraviolet protection factor from a value of UPF 5 3 to UPF 5 100 and above. For attaining a high UPF value, the cotton material should exhibit low porosity. The UV absorbers with 2-hydroxyphenyl group are stable in light and do not fluoresce on the fabric on contrary to derivatives without 2-hydroxyphenyl group or with 2-methoxyphenyl group. The high photostability of absorbers is explained by the possibility to disperse the absorbed energy of UV radiation in the form of harmless energy such as IR radiation (heat) through the reversible hydrogen bond between phenolic hydroxyl group and triazine cycle. The UV filters block the effect of optical brightening agents on cotton by quenching the fluorescence.
Despite intense research in the field of aqueous organic redox flow batteries, low molecular stability of electroactive compounds limits further commercialization. Additionally, currently used methods typically cannot differentiate between individual capacity fade mechanisms, such as degradation of electroactive compound and its cross-over through the membrane. We present a more complex method for in situ evaluation of (electro)chemical stability of electrolytes using a flow electrolyser and a double half-cell including permeation measurements of electrolyte cross-over through a membrane by a UV–VIS spectrometer. The method is employed to study (electro)chemical stability of acidic negolyte based on an anthraquinone sulfonation mixture containing mainly 2,6- and 2,7-anthraquinone disulfonic acid isomers, which can be directly used as an RFB negolyte. The effect of electrolyte state of charge (SoC), current load and operating temperature on electrolyte stability is tested. The results show enhanced capacity decay for fully charged electrolyte (0.9 and 2.45% per day at 20 °C and 40 °C, respectively) while very good stability is observed at 50% SoC and lower, even at 40 °C and under current load (0.02% per day). HPLC analysis conformed deep degradation of AQ derivatives connected with the loss of aromaticity. The developed method can be adopted for stability evaluation of electrolytes of various organic and inorganic RFB chemistries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.