To describe the effects of inert compounds in gaseous fuel, experiments on three different process burners (staged fuel burner, staged air burner, and low-calorific burner) were carried out. The tested burners are commercially available, but they were specially designed for experimental usage. Tests were carried out in the semi-industrial burner testing facility to investigate the influence of inert gases on the flame characteristics, emissions, and heat flux to the combustion chamber wall. Natural gas was used as a reference fuel, and, during all tests, thermal power of 500 kW was maintained. To simulate the combustion of alternative fuels with lower LHV, N2 and CO2 were used as diluents. The inert gas in the hydrocarbon fuel at certain conditions can lower NOx emissions (up to 80%) and increase heat flux (up to 5%). Once incombustible compounds are present in the fuel, the higher amount of fuel flowing through nozzles affects the flow in the combustion chamber by increasing the Reynolds number. This can change the flame pattern and temperature field, and it can be both positive and negative, depending on actual conditions.
A rotary kiln is a unique facility with widespread applications not only in the process industry, such as building-material production, but also in the energy sector. There is a lack of a more comprehensive review of this facility and its perspectives in the literature. This paper gives a semi-systematic review of current research. Main trends and solutions close to commercial applications are found and evaluated. The overlap between process and energy engineering brings the opportunity to find various uncommon applications. An example is a biogas plant digestate treatment using pyrolysis in the rotary kiln. Artificial intelligence also finds its role in rotary kiln control processes. The most significant trend within rotary kiln research is the waste-to-energy approach in terms of various waste utilization within the process industry or waste pyrolysis in terms of new alternative fuel production and material utilization. Results from this review could open new perspectives for further research, which should be focused on integrated solutions using a process approach. New, complex solutions consider both the operational (mass calculations) and the energy aspects (energy calculations) of the integration as a basis for the energy sustainability and low environmental impact of rotary kilns within industrial processes.
Over the past decades, the efficiency of the silicate-based surface treatment agents, in other words, sealers, in concrete systems has been widely investigated. The surface treatment technology protects the cementitious systems against the penetration of undesirable substances. Nevertheless, understanding of the several aspects concerning silicate-based sealers is not entirely clear. This paper studies the action mechanism of selected silicates such as potassium, sodium, lithium water glasses, and colloidal silica. The effectiveness of used sealers in terms of water absorption reduction, the ability of silicates to heal pores, and the influence on the microstructure of the cement substrate were studied. Instrumental methods such as rheology, mercury intrusion porosimetry, or scanning electron microscopy were used to achieve satisfactory results. Nuances between the unique film-forming sealers were found. Colloidal silica showed a low sealing effect compared to alkali silicates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.