In this paper we introduce unique publicly available dense anisotropic BRDF data measurements. We use this dense data as a reference for performance evaluation of the proposed BRDF sparse angular sampling and interpolation approach. The method is based on sampling of BRDF subspaces at fixed elevations by means of several adaptively-represented, uniformly distributed, perpendicular slices. Although this proposed method requires only a sparse sampling of material, the interpolation provides a very accurate reconstruction, visually and computationally comparable to densely measured reference. Due to the simple slices measurement and method's robustness it allows for a highly accurate acquisition of BRDFs. This in comparison with standard uniform angular sampling, is considerably faster yet uses far less samples.
Abstract-An ever-growing number of real-world computer vision applications require classification, segmentation, retrieval, or realistic rendering of genuine materials. However, the appearance of real materials dramatically changes with illumination and viewing variations. Thus, the only reliable representation of material visual properties requires capturing of its reflectance in as wide range of light and camera position combinations as possible. This is a principle of the recent most advanced texture representation, the Bidirectional Texture Function (BTF). Multispectral BTF is a seven-dimensional function that depends on view and illumination directions as well as on planar texture coordinates. BTF is typically obtained by measurement of thousands of images covering many combinations of illumination and viewing angles. However, the large size of such measurements has prohibited their practical exploitation in any sensible application until recently. During the last few years, the first BTF measurement, compression, modeling, and rendering methods have emerged. In this paper, we categorize, critically survey, and psychophysically compare such approaches, which were published in this newly arising and important computer vision and graphics area.
BRDFs are commonly used to represent given materials’ appearance in computer graphics and related fields. Although, in the recent past, BRDFs have been extensively measured, compressed, and fitted by a variety of analytical models, most research has been primarily focused on simplified isotropic BRDFs. In this paper, we present a unique database of 150 BRDFs representing a wide range of materials; the majority exhibiting anisotropic behavior. Since time‐consuming BRDF measurement represents a major obstacle in the digital material appearance reproduction pipeline, we tested several approaches estimating a very limited set of samples capable of high quality appearance reconstruction. Initially, we aligned all measured BRDFs according to the location of the anisotropic highlights. Then we propose an adaptive sampling method based on analysis of the measured BRDFs. For each BRDF, a unique sampling pattern was computed, given a predefined count of samples. Further, template‐based methods are introduced based on reusing of the precomputed sampling patterns. This approach enables a more efficient measurement of unknown BRDFs while preserving the visual fidelity for the majority of tested materials. Our method exhibits better performance and stability than competing sparse sampling approaches; especially for higher numbers of samples.
The Bidirectional Texture Function (BTF) is becoming widely used for accurate representation of real-world material appearance. In this paper a novel BTF compression model is proposed. The model resamples input BTF data into a parametrization, allowing decomposition of individual view and illumination dependent texels into a set of multi-dimensional conditional probability density functions. These functions are compressed in turn using a novel multi-level vector quantization algorithm. The result of this algorithm is a set of index and scale code-books for individual dimensions. BTF reconstruction from the model is then based on fast chained indexing into the nested stored code-books. In the proposed model, luminance and chromaticity are treated separately to achieve further compression. The proposed model achieves low distortion and compression ratios 1:233-1:2040, depending on BTF sample variability. These results compare well with several other BTF compression methods with predefined compression ratios, usually smaller than 1:200. We carried out a psychophysical experiment comparing our method with LPCA method. BTF synthesis from the model was implemented on a standard GPU, yielded interactive framerates. The proposed method allows the fast importance sampling required by eye-path tracing algorithms in image synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.