Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south‐western (Iberia) and south‐central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (−7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant −10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.
A species’ susceptibility to environmental change might be predicted by its ecological and life‐history traits. However, the effects of such traits on long‐term bird population trends have not yet been assessed using a comprehensive set of explanatory variables. Moreover, the extent to which phylogeny affects patterns in the interspecific variability of population changes is unclear. Our study focuses on the interspecific variability in long‐term population trends and annual population fluctuations of 68 passerine species in the Czech Republic, assessing the effects of eight life‐history and five ecological traits. Ordination of life‐history traits of 68 species revealed a life‐history gradient, from ‘r‐selected’ (e.g. small body mass, short lifespan, high fecundity, large clutch size) to ‘K‐selected’ species. r‐selected species had more negative population trends than K‐selected species, and seed‐eaters declined compared with insectivores. We suggest that the r‐selected species probably suffer from widespread environmental changes, and the seed‐eaters from current changes in agriculture and land use. Populations of residents fluctuated more than populations of short‐distance migrants, probably due to the effect of winter climatic variability. Variance partitioning at three taxonomic levels showed that whereas population trends, population fluctuations and habitat specialization expressed the highest variability at the species level, most life‐history traits were more variable at higher taxonomic levels. These results explain the loss of statistical power in the relationship between life histories and population trends after controlling for phylogeny. However, we argue that a lack of significance after controlling for phylogeny should not reduce the value of such results for conservation purposes.
Migratory strategies of animals are broadly defined by species’ eco-evolutionary dynamics, while behavioural plasticity according to the immediate environmental conditions en route is crucial for energy efficiency and survival. The Arctic tern Sterna paradisaea is known for its remarkable migration capacity, as it performs the longest migration known by any animal. Yet, little is known about the ecology of this record-breaking journey. Here, we tested how individual migration strategies of Arctic terns are adapted to wind conditions and fuelling opportunities along the way. To this end, we deployed geolocators on adult birds at their breeding sites in Svalbard, Norway. Our results confirm fundamental predictions of optimal migration theory: Arctic terns tailor their migration routes to profit from (1) tailwind support during the movement phase and (2) food-rich ocean areas during the stopover phase. We also found evidence for seasonally distinct migration strategies: terns prioritize fuelling in areas of high ocean productivity during the southbound autumn migration and rapid movement relying on strong tailwind support during the northbound spring migration. Travel speed in spring was 1.5 times higher compared to autumn, corresponding to an increase in experienced wind support. Furthermore, with their pole-to-pole migration, Arctic terns experience approximately 80% of all annual daylight on Earth (the most by any animal), easing their strictly diurnal foraging behaviour. However, our results indicate that during migration daylight duration is not a limiting factor. These findings provide strong evidence for the importance of interaction between migrants and the environment in facilitating the longest animal migration on Earth.
The subject of population cycles is regarded as controversial due to a number of unsettled questions such as whether or not cyclic patterns are governed by the same processes at high and low latitudes in Europe. Recent evidence suggests that the dynamics at high and low latitudes share the common temporal pattern of vole dynamics referred to as collapsing population cycles. Despite concurrent interest, the key contention around the causal mechanisms that drive population cycles remains a hot topic in ecology. The aims of this study are to supplement information on the seasonal population dynamics of the field vole Microtus agrestis in the Czech Republic by analysing 25 years of time series data. By applying robust estimation procedures, we estimated several parameters to describe population dynamics, such as population variability, amplitude dampening, cycle period, order of the dynamics and the structure of density dependence. The parameters indicate that field vole dynamics in central Europe are highly variable, cyclic dynamics of order two, with peaks in abundance occurring regularly at intervals of 4–5 years. In addition to exhibiting population cycles, the field vole populations show a pattern of dampened amplitude as observed elsewhere in Europe, including northern latitudes. By analysing temporal trends in seasonal abundances, population growth rates and environmental temperatures, we did not obtain evidence to support the hypothesis that amplitude dampening results from the negative effect of increasingly mild winters on winter population growth rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.