Non-destructive assessment of chlorophyll content has recently been widely done by chlorophyll meters based on measurement of leaf transmittance (e.g. the SPAD-502 chlorophyll meter measures the leaf transmittance at 650 and 940 nm). However, the leaf transmittance depends not only on the content of chlorophylls but also on their distribution in leaves. The chlorophyll distribution within leaves is co-determined by chloroplast arrangement in cells that depends on light conditions. When tobacco leaves were exposed to a strong blue light (about 340 μmol of photons m⁻² s⁻¹), a very pronounced increase in the leaf transmittance was observed as chloroplasts migrated from face position (along cell walls perpendicular to the incident light) to side position (along cell walls parallel to the incoming light) and the SPAD reading decreased markedly. This effect was more pronounced in the leaves of young tobacco plants compared with old ones; the difference between SPAD values in face and side position reached even about 35%. It is shown how the chloroplast movement changes a relationship between the SPAD readings and real chlorophyll content. For an elimination of the chloroplast movement effect, it can be recommended to measure the SPAD values in leaves with a defined chloroplasts arrangement.
Although the chloroplast movement can be strongly affected by ambient temperature, the information about chloroplast movement especially related to high temperatures is scarce. For detailed investigation of the effects of heat stress (HS) on tobacco leaves (Nicotiana tabacum L. cv. Samsun), we used two different HS treatments in dark with wide range of elevated temperatures (25-45 degrees C). The leaf segments were either linearly heated in water bath at heating rate of 2 degrees C min(-1) from room temperature up to maximal temperature (T (m)) and then linearly cooled down to 25 degrees C or incubated for 5 min in water bath at the same T (m) followed by 5 min incubation at 25 degrees C (T-jump). The changes in light-induced chloroplast movement caused by the HS pretreatment were detected after the particular heating regime at 25 degrees C using a method of time-dependent collimated transmittance (CT) and compared with the chlorophyll O-J-I-P fluorescence rise (FLR) measurements. The inhibition of chloroplast movement started at about 40 degrees C while the fluorescence parameters responded generally at higher T (m). This difference in sensitivity of CT and FLR was higher for the T-jump than for the linear HS indicating importance of applied heating regime. A possible influence of chloroplast movement on the FLR measurement and a physiological role of the HS-impaired chloroplast movement are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.