Background
Validation and standardization of methodologies for microbial community measurements by high-throughput sequencing are needed to support human microbiome research and its industrialization. This study set out to establish standards-based solutions to improve the accuracy and reproducibility of metagenomics-based microbiome profiling of human fecal samples.
Results
In the first phase, we performed a head-to-head comparison of a wide range of protocols for DNA extraction and sequencing library construction using defined mock communities, to identify performant protocols and pinpoint sources of inaccuracy in quantification. In the second phase, we validated performant protocols with respect to their variability of measurement results within a single laboratory (that is, intermediate precision) as well as interlaboratory transferability and reproducibility through an industry-based collaborative study. We further ascertained the performance of our recommended protocols in the context of a community-wide interlaboratory study (that is, the MOSAIC Standards Challenge). Finally, we defined performance metrics to provide best practice guidance for improving measurement consistency across methods and laboratories.
Conclusions
The validated protocols and methodological guidance for DNA extraction and library construction provided in this study expand current best practices for metagenomic analyses of human fecal microbiota. Uptake of our protocols and guidelines will improve the accuracy and comparability of metagenomics-based studies of the human microbiome, thereby facilitating development and commercialization of human microbiome-based products.
-Blood alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities are widely used as sensitive markers of liver toxicity. However, these activities are also recognized to be altered by hormonal and nutritional modifications. We investigated the relationships between the activity and gene expression of the hepatic transaminases and the state of hepatic amino acid/glucose/fatty acid metabolism in the ad libitum fed (ALF) and spaced-fed (SF) rats. Acceleration of hepatic gluconeogenesis and fatty acid oxidation was noted in the SF rats. Expression of hepatic clock gene was also altered in the SF rats. Hepatic transaminase activities in the SF rats were higher than those in the ALF rats. These alterations were due to increases in the synthesis of hepatic ALT and AST proteins. In conclusion, the increased transaminase protein synthesis in the liver of the SF rats was considered to be related to the acceleration of hepatic gluconeogenesis under the conditions of spaced feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.