Standard electrochemical data for high-quality, boron-doped diamond thin-film electrodes are presented. Films from two different sources were compared (NRL and USU) and both were highly conductive, hydrogen-terminated, and polycrystalline. The films are acid washed and hydrogen plasma treated prior to use to remove nondiamond carbon impurity phases and to hydrogen terminate the surface. The boron-doping level of the NRL film was estimated to be in the mid 1019 B/cm3 range, and the boron-doping level of the USU films was approximately 5 x 10(20) B/cm(-3) based on boron nuclear reaction analysis. The electrochemical response was evaluated using Fe-(CN)6(3-/4-), Ru(NH3)6(3+/2+), IrCl6(2-/3-), methyl viologen, dopamine, ascorbic acid, Fe(3+/2+), and chlorpromazine. Comparisons are made between the apparent heterogeneous electron-transfer rate constants, k0(app), observed at these high-quality diamond films and the rate constants reported in the literature for freshly activated glassy carbon. Ru(NH3)6(3+/2+), IrCl6(2-/3-), methyl viologen, and chlorpromazine all involve electron transfer that is insensitive to the diamond surface microstructure and chemistry with k0(app) in the 10(-2)-10(-1) cm/s range. The rate constants are mainly influenced by the electronic properites of the films. Fe(CN)6(3-/4-) undergoes electron transfer that is extremely sensitive to the surface chemistry with k0(app) in the range of 10(-2)-10(-1) cm/s at the hydrogen-terminated surface. An oxygen surface termination severely inhibits the rate of electron transfer. Fe(3+/2+) undergoes slow electron transfer at the hydrogen-terminated surface with k0(app) near 10(-5) cm/s. The rate of electron transfer at sp2 carbon electrodes is known to be mediated by surface carbonyl functionalities; however, this inner-sphere, catalytic pathway is absent on diamond due to the hydrogen termination. Dopamine, like other catechol and catecholamines, undergoes sluggish electron transfer with k0(app) between 10(-4) and 10(-5) cm/s. Converting the surface to an oxygen termination has little effect on k0(app). The slow kinetics may be related to weak adsorption of these analytes on the diamond surface. Ascorbic acid oxidation is very sensitive to the surface termination with the most negative Ep(ox) observed at the hydrogen-terminated surface. An oxygen surface termination shifts Ep(ox) positive by some 250 mV or more. An interfacial energy diagram is proposed to explain the electron transfer whereby the midgap density of states results primarily from the boron doping level and the lattice hydrogen. The films were additionally characterized by scanning electron microscopy and micro-Raman imaging spectroscopy. The cyclic voltammetric and kinetic data presented can serve as a benchmark for research groups evaluating the electrochemical properties of semimetallic (i.e., conductive), hydrogen-terminated, polycrystalline diamond.
The electrochemistry of anthraquinone-2,6-disulfonate (2,6-AQDS) at glassy carbon (GC), hydrogenated glassy carbon (HGC), the basal plane of highly oriented pyrolytic graphite (HOPG), and boron-doped diamond was investigated by cyclic voltammetry and chronocoulometry. Quantitative determination of the surface coverage and qualitative assessment of the physisorption strength of 2,6-AQDS adsorption on each of these electrodes were done. The diamond and HGC surfaces are nonpolar and relatively oxygen-free, with the surface carbon atoms terminated by hydrogen. The polar 2,6-AQDS does not adsorb on these surfaces, and the electrolysis proceeds by a diffusion-controlled reaction. Conversely, the GC and HOPG surfaces are polar, with the exposed defect sites terminated by carbon-oxygen functionalities. 2,6-AQDS strongly physisorbs on both of these surfaces at near monolayer or greater coverages, such that the electrolysis proceeds through a surface-confined state. Less than 40% of the initial surface coverage can be removed by rinsing and solution replacement, reflective of strong physisorption. The results show the important role of the surface carbon-oxygen functionalities in promoting strong dipole-dipole and ion-dipole interactions with polar and ionic molecules such as 2,6-AQDS. The results also support the theory that diamond electrodes may be less subject to fouling by polar adsorbates, as compared to GC, leading to improved response stability in electroanalytical measurements. The relationship between the 2,6-AQDS surface coverage, the double-layer capacitance, and the heterogeneous electron-transfer rate constant for Fe(CN)(6)(3)(-)(/4)(-) for these four carbon electrodes is presented.
The contact domain utilized by horse cytochrome c when adsorptively bound to a C(10)COOH self-assembled monolayer (SAM) was delineated using a chemical method based on differential modification of surface amino acids. Horse cytochrome c was adsorbed at low ionic strength (pH 7.0, 4.4 mM potassium phosphate) onto 10 microm diameter gold particles coated with HS(CH(2))(10)COOH SAMs. After in situ modification of lysyl groups by reductive Schiff-base methylation, the protein was desorbed, digested using trypsin, and the peptide mapped using LC/MS. Relative lysyl reactivities were ascertained by comparing the resulting peptide frequencies to control samples of solution cytochrome c modified to the same average extent. The least reactive lysines in adsorbed cytochrome c were found to be 13, 72, 73, 79, and 86-88, consistent with a contact region located up and to the left (Met-80 side) of the solvent-exposed heme edge (conventional front face view). The most reactive lysines were 39, 53, 55, and 60, located on the lower backside. The proposed orientation features a heme tilt angle of approximately 35-40 degrees with respect to the substrate surface normal. Factors that can complicate or distort data interpretation are discussed, and the generality of differential modification relative to existing in situ methods for protein orientation determination is also addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.