Here, we report two synthetic oligopeptide-based, thermoreversible, pH-sensitive hydrogels. In gel phase, these self-assembling tetrapeptides form a long interconnected nanofibrilar network structure, as is evident from various microscopic techniques, including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). FTIR, circular dichroism, and wide angle X-ray diffraction (WAXD) favor an antiparallel beta-sheet structure of these gelators in the gel state. Finally, these hydrogels have been utilized for entrapment and slow release of an anticancer drug doxorubicin at physiological pH, promising their future application as a drug delivery vehicle.
The concentration dependent transformation of an oligopeptide nanostructure from nanovesicles to nanotubes at neutral pH is presented. The oligopeptide Acp-Tyr-Glu (Acp: 6-aminohexanoic acid) forms nanovesicles at a concentration of 6.9 mg mL(-1). At a concentration of 2.3 mg mL(-1) these vesicular structures completely disappear and nanotubular structures are observed. We have also successfully optimized an intermediate concentration (3.4 mg mL(-1)) where an ordered array of fused vesicular structures are formed, which actually leads to the transition from nanovesicles to nanotubes. These vesicular structures are very much sensitive toward metal ions and pH. Biocompatible calcium ions and high pH (10.7) can trigger the rupturing of these nanovesicles. One important property of these nanovesicular structures is the encapsulation of a potent anticancer drug doxorubicin, which can also be released in the presence of calcium ions promising a future use of these nanovesicles as vehicles for carrying biologically important molecules.
Self-assembling short peptides can offer an opportunity to make useful nano-/microstructures that find potential application in drug delivery. We report here the formation of multivesicular structures from self-assembling water-soluble synthetic amphiphilic dipeptides containing a glutamic acid residue at the C-terminus. These vesicular structures are stable over a wide range of pH (pH 2-12). However, they are sensitive towards calcium ions. This causes the rupturing of these vesicles. Interestingly, these vesicles can not only encapsulate an anticancer drug and a fluorescent dye, but also can release them in the presence of calcium ions. Moreover, these multivesicular structures have the potential to carry biologically important molecules like cyclic adenosine monophosphate (cAMP) within the cells keeping their biological functions intact. A MTT cell-survival assay suggests the almost nontoxic nature of these vesicles. Thus, these peptide vesicles can be used as biocompatible delivery vehicles for carrying drugs and other bioactive molecules.
A water-soluble, hydrophilic tripeptide GYE, having sequence identity with the N-terminal segment of amyloid peptides Abeta(9-11), upon self-association exhibits amyloid-like fibrils and significant neurotoxicity towards the Neuro2A cell line. However, the tripeptides GFE and GWE, in which the centrally located tyrosine residue has been replaced by phenylalanine or tryptophan, fail to show amyloidogenic behavior and exhibit little or no neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.