A portable and nonlabeled plasmonic biosensor was advanced to enable the sensitive and selective detection of microRNA (miRNA) in a biological sample. miRNAs can act on several key cellular processes, including cell differentiation, cell cycle progression, and function as oncogenes. Detection of circulating miRNAs, especially in blood or urine samples, allows noninvasive and simple diagnosis of diseases. Herein, we report a localized surface plasmon resonance sensor (LSPR) based on an enzyme-assisted target recycling system and a developed LSPR probe for the detection of gastric cancer relevant miRNAs, miR-10b. The sensitivity of the sensor was improved by increasing the concentration of the signal-amplifying agent using the duplex-specific nuclease and by strongly binding the developed LSPR probe, tannic acid capping gold nanoparticles, to the DNA. Under optimal conditions, miR-10b detection could be realized in the range of 5 pM−10 nM with a detection limit of 2.45 pM. This integrated detection system represents an approach to sensitive detection of miRNAs and offers great applications in personalized medicine and monitoring of cancer.
Bilayer spherical polymersome based adjuvants promote the antigen cellular uptake into antigen-presenting cells. The administration of polymersome loading OVA and MPLA induce the secretion of cytokines by macrophage activation and elicit potent antigen-specific antibody responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.