Much of the morbidity and mortality due to prostate cancer happen because of castration-resistant prostate cancer (CRPC) which invariably develops after anti-androgenic therapy. FDA-approved enzalutamide is commonly prescribed for CRPC which works by blocking androgen receptor function. However, even after initial good response, enzalutamide-resistant prostate cancer (ERPC) develops which eventually leads to widespread metastasis. Management of ERPC is extremely difficult because available therapeutic regimen cannot effectively kill and eliminate ERPC cells. Though the mechanism behind enzalutamide-resistance is not properly understood, over-activation of c-Myc has been found to be a common event which plays an important role in the maintenance and progression of ERPC phenotype. However, direct-targeting of c-Myc poses special problem because of its non-enzymatic nature and certain amount of c-Myc activity is needed by non-cancer cells as well. Thus, c-Myc has emerged as an elusive target which needs to be managed by novel agents and strategies in a cancerspecific way. We investigated the effects of pharmacological and genetic inhibition of 5-lipoxygenase (5-Lox) on cell proliferation, apoptosis and invasive potential of enzalutamide-resistant prostate cancer cells. Transcriptional activity of c-Myc was analyzed by DNA-binding, luciferase-assays, and expression of c-Myc-target genes. We found that 5-Lox regulates c-Myc signaling in enzalutamide-resistant prostate cancer cells and inhibition of 5-Lox by Quiflapon/MK591 or shRNA interrupts oncogenic c-Myc signaling and kills ERPC cells by triggering caspase-mediated apoptosis. Interestingly, MK591 does not affect normal, non-cancer cells in the same experimental conditions. Our findings indicate that inhibition of 5-Lox may emerge as a promising new approach to effectively kill ERPC cells sparing normal cells and suggest that development of a long-term curative therapy of prostate cancer may be possible by killing and eliminating ERPC cells with suitable 5-Lox-inhibitors. Prostate cancer is the most prevalent form of malignancy and a leading cause of cancer-related deaths in American men taking thousands of lives every year 1. Much of the morbidity and mortality due to prostate cancer is caused by castration-resistant prostate cancer (CRPC), which invariably develops after initial good response with androgen-deprivation therapies (ADT). Enzalutamide, an FDA-approved inhibitor of androgen receptor function, is commonly prescribed to treat castration-resistant prostate cancer 2-5. While Enzalutamide improves survival and quality of life of patients with castrate-resistant disease, which highlights the benefit of targeting the AR axis in CRPC, enzalutamide-resistant prostate cancer (ERPC) almost always develops which leads to widespread metastatic disease eventually bringing demise to prostate cancer patients 4-6. ERPC is not curable because currently available therapeutic regimen cannot effectively kill and eliminate ERPC cells. Thus, ERPC is considered
The objective of this study was to evaluate the cytotoxicity of (+)-cyanidan-3-ol (CD-3) in human hepatocellular carcinoma cell line (HepG2) and chemopreventive potential against hepatocellular carcinoma (HCC) in Balb/c mice. The HepG2 cell line was treated with CD-3 at various concentrations and the proliferation of the HepG2 cells was measure by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT), sulforhodamine B (SRB) and lactate dehydrogenase (LDH) assays. Cell apoptosis was detected by Hoechst 33258 (HO), Acridine orange/ethylene dibromide (AO/EB) staining, DNA fragmentation analysis and the apoptosis rate was detected by flow cytometry. The HCC tumor model was established in mice by injecting N-nitrosodiethylamine/carbon tetrachloride (NDEA/CCl4) and the effect of CD-3 on tumor growth in-vivo was studied. The levels of liver injury markers, tumor markers, and oxidative stress were measured. The expression levels of apoptosis-related genes in in-vitro and in vivo models were determined by RT-PCR and ELISA. The CD-3 induced cell death was considered to be apoptotic by observing the typical apoptotic morphological changes under fluorescent microscopy and DNA fragmentation analysis. Annexin V/PI assay demonstrated that apoptosis increased with increase in the concentration of CD-3. The expression levels of apoptosis-related genes that belong to bcl-2 and caspase family were increased and AP-1 and NF-κB activities were significantly suppressed by CD-3. Immunohistochemistry data revealed less localization of p53, p65 and c-jun in CD-3 treated tumors as compared to localization in NDEA/CCl4 treated tumors. Taken together, our data demonstrated that CD-3 could significantly inhibit the proliferation of HepG2 cells in-vitro and suppress HCC tumor growth in-vivo by apoptosis induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.