The present study aimed to elucidate the potential roles and regulatory mechanism of microRNA (miR)-574-3p in the development of chronic myeloid leukemia (CML). The expression of miR-574-3p in peripheral blood obtained from patients with CML was examined. Subsequently, miR-574-3p was overexpressed and suppressed in CML K562 cells to further investigate the effects of miR-574-3p on cell proliferation, and apoptosis. Furthermore, a luciferase reporter assay was performed to investigate whether interleukin-6 (IL-6) was a target of miR-574-3p. In addition, the regulatory association between miR-574-3p and the IL-6/Janus kinase (JNK)/signal transducer and activator of transcription-3 (STAT3) signaling pathway was explored. The expression of miR-574-3p in the peripheral blood obtained from patients with CML was significantly lower compared with that in healthy controls. Overexpression of miR-574-3p significantly inhibited the proliferation and induced the apoptosis of K562 cells, whereas suppression of miR-574-3p exhibited opposite effects. In addition, IL-6 was identified to be a direct target of miR-574-3p. Overexpression of IL-6 significantly promoted the proliferation and inhibited the apoptosis of K562 cells. Furthermore, overexpression of miR-574-3p inhibited the activation of the JAK/STAT3 signaling pathway, which was rescued by overexpression of IL-6. The results of the current study indicate that miR-574-3p overexpression may serve an important role in inhibiting proliferation and inducing apoptosis of K562 cells via suppression of IL-6/JAK/STAT3 signaling pathway activation. miR-574-3p may serve as a potential therapeutic target for CML.
Objective: To investigate the functions and potential molecular mechanism of LINC01296 regarding the progression of cutaneous malignant melanoma (CMM) by the regulation of miR-324-3p/MAPK1 axis. Methods: The candidate differential lncRNAs of CMM were selected from GEPIA database, and quantitative realtime PCR (qRT-PCR) was utilized to assess the expression level of LINC01296 in human CMM tissues and cell lines. Cell proliferation assay, Colony formation assay, Ethynyl-2'-deoxyuridine (EDU) assay in vitro and tumorigenicity assays in nude mice in vivo were performed to examine the functions of LINC01296. Bioinformatics analysis, luciferase reporter assay and rescue experiments were also gained an insight into the underlying mechanisms of LINC01296 in CMM cell lines by miR-324-3p/MAPK1 axis. Results: In this study, the up-regulation of LINC01296 was found in CMM tissues and cell lines. Functionally, the over-expression of LINC01296 promoted the proliferation in CMM cell lines. In addition, immunochemistry analysis confirmed that the levels of MAPK1 and Ki-67 in sh-LINC01296-xenografted tumors was weaker than that in sh-NCxenografted tumors. Then, bioinformatics analysis confirmed that LINC01296 interacted with miR-324-3p. Further investigations showed that MAPK1, which collected from the potential related genes of LINC01296, was the conjugated mRNA of miR-324-3p by luciferase reporter assay. Finally, the rescue experiments suggested the positive regulatory association among LINC01296 and MAPK1, which showed that MAPK1 could reverse the promoting-effect of LINC01296 in CMM cells in vitro. Conclusions: Therefore, our findings provided insight into the mechanisms of LINC01296 via miR-324-3p/MAPK1 axis in CMM, and revealed an alternative target for the diagnosis and treatment of CMM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.