BackgroundMetastasis to long distance organs is the main reason leading to morality of tongue squamous cell carcinoma (TSCC); however, the molecular mechanisms are still unknown. High mobility group AT-hook 2 (HMGA2) is highly expressed in multiple metastatic carcinomas, in which it contributes to cancer progression, metastasis and poor prognosis by upregulating Snail expression and inducing epithelial mesenchymal transition (EMT). This study focuses on investigating the role and mechanism of regulation of HMGA2 in the metastasis of TSCC.MethodsHMGA2 mRNA and protein expression were examined in TSCC specimens by quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry (IHC). Western blotting, IHC and immunofluorescence were also used to measure the expression and localization of EMT marker E-Cadherin and Vimentin both in TSCC cells and tissues. Knockdown assay was performed in vitro in TSCC cell lines using small interfering RNAs and the functional assay was carried out to determine the role of HMGA2 in TSCC cell migration and invasion.ResultsTSCC mRNA and protein expression were significantly up-regulated in tumor tissues when compared to adjacent non-tumor tissues, and the overexpression of HMGA2 was closely correlated with lymph nodes metastasis. Clinicopathological analysis indicated that HMGA2 expression was associated with clinical stage (P = 0.001), lymph node metastasis (P = 0.000), histological differentiation (P = 0.002) and survival (P = 0.000). Silencing the HMGA2 expression in Cal27 and UM1 resulted in the inhibition of cell migration and invasion, meanwhile down-regulation of HMGA2 impaired the phenotype of EMT in TSCC cell lines and tissues. The Multivariate survival analysis indicates that HMGA2 can be an independent prognosis biomarker in TSCC.ConclusionOur findings demonstrate that HMGA2 promotes TSCC invasion and metastasis; additionally, HMGA2 is an independent prognostic factor which implied that HMGA2 can be a biomarker both for prognosis and therapeutic target of TSCC.
Recent studies have demonstrated that mesenchymal stem cells (MSC) exhibit a tropism to tumors and form the tumor stroma. In addition, we found that MSC can secrete different types of factors. However, the involvement of MSC‐derived factors in human tongue squamous cell carcinoma (TSCC) growth has not been clearly addressed. The CCN family includes multifunctional signaling molecules that affect the initiation and development events of various tumors. In our study, we report that CCN2/connective tissue growth factor (CTGF) was the most highly induced among the CCN family members in MSC that were co‐cultured with TSCC cells. To evaluate the relationship between CCN2 and TSCC growth, we downregulated MSC‐derived CCN2 expression with shRNA targeting CCN2 and found that MSC‐secreted CCN2 promotes TSCC cell proliferation, migration and invasion. We also confirmed that MSC‐derived CCN2 partially accelerated tumor growth in vitro. Taken together, these results suggest that MSC‐derived CCN2 contributes to the promotion of proliferation, migration and invasion of TSCC cells and may be a possible therapy target in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.