Background: Circular RNAs (circRNAs), a new type of noncoding RNA (ncRNA), have been identified as significant gene expression regulators and are involved in cancer progression. However, the roles of circRNAs in nasopharyngeal carcinoma (NPC) remain largely unknown. Methods: Here, the expression profile of circRNAs in a pair of NPC cell lines with different metastatic abilities (S18 and S26 cells) was analyzed by RNA-sequencing. Quantitative reverse transcription PCR was used to detect the expression level of circCRIM1 in NPC cells and tissues. Then, function experiments in vitro and in vivo were performed to evaluate the effects of circCRIM1 on NPC metastasis and EMT. Mechanistically, RNA immunoprecipitation, luciferase reporter assay, pull-down assay with biotinylated miRNA, fluorescent in situ hybridization were performed to confirm the interaction between circCRIM1 and miR-422a in NPC. The clinical value of circCRIM1 was evaluated in NPC metastasis and chemosensitivity. Results: We identified that circCRIM1 was upregulated in highly metastatic NPC cells. CircCRIM1 was also overexpressed in NPC tissues with distant metastasis, and its overexpression promoted NPC cell metastasis and EMT. Mechanistically, circCRIM1 competitively bound to miR-422a and prevented the suppressive effects of miR-422a on its target gene FOXQ1, which finally led to NPC metastasis, EMT and docetaxel chemoresistance. Furthermore, high circCRIM1 expression was associated with unfavorable survival in NPC patients. We established a prognostic model based on circCRIM1 expression and N stage that effectively predicted the risk of distant metastasis and treatment response to docetaxel-containing induction chemotherapy in NPC patients. Conclusions: Our findings reveal the critical role of circCRIM1 specifically in promoting NPC metastasis and chemoresistance via a ceRNA mechanism and provide an exploitable biomarker and therapeutic target for prognosis and treatment resistance in NPC patients.
BackgroundImmunotherapy, especially immune checkpoint inhibition, has provided powerful tools against cancer. We aimed to detect the expression of common immune checkpoints and evaluate their prognostic values in nasopharyngeal carcinoma (NPC).MethodsThe expression of 9 immune checkpoints consistent with 13 features was detected in the training cohort (n = 208) by immunohistochemistry and quantified by computational pathology. Then, the LASSO cox regression model was used to construct an immune checkpoint-based signature (ICS), which was validated in a validation cohort containing 125 patients.ResultsHigh positive expression of PD-L1 and B7-H4 was observed in tumour cells (TCs), whereas PD-L1, B7-H3, B7-H4, IDO-1, VISTA, ICOS and OX40 were highly expressed in tumour-associated immune cells (TAICs). Eight of the 13 immune features were associated with patient overall survival, and an ICS classifier consisting of 5 features (B7-H3TAIC, IDO-1TAIC, VISTATAIC, ICOSTAIC, and LAG3TAIC) was established. Patients with high-risk scores in the training cohort had shorter overall (P < 0.001), disease-free (P = 0.002), and distant metastasis-free survival (P = 0.004), which were confirmed in the validation cohort. Multivariate analysis revealed that the ICS classifier was an independent prognostic factor. A combination of the ICS classifier and TNM stage had better prognostic value than the TNM stage alone. In addition, the ICS classifier was significantly associated with survivals in patients with high EBV-DNA load.ConclusionsWe determined the expression status of nine immune checkpoints consistent with 13 features in NPC and further constructed an ICS prognostic model, which might add prognostic value to the TNM staging system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.