This paper is the first of a series of papers on the roughness characteristics of the burden surface in the blast furnace. The measurement method of the burden surface roughness texture is described, and the overall roughness characteristics of the burden surface are studied from a statistical point of view. This study focuses on two typical granularized burden materials, coke and sintered ore, which present four kinds of burden particles under two individual particle sizes. Simulated cold-state burden belts proportional to the practical burden radial sectors were stacked in a pilot plant. An RGBD camera was used to measure the simulated burden belt surfaces to obtain the surface texture details. Four corresponding digital elevation models of the burden belts were obtained through data processing. The root mean squared height, skewness, kurtosis, and spatial autocorrelation function are selected as statistical indexes. The obtained digital elevation models were counted. The results show that all four kinds of burden surfaces are Isotropic-Rough-Surface. In addition, the height distributions of the rough burden surface are close to the Gaussian distribution. Also, the spatial autocorrelation functions of the coke and large-sized sintered ore burden surfaces are close to the Gaussian function form. And lastly, the spatial autocorrelation function of the small sintered ore burden surface is close to the exponential function form.
To comprehensively quantitative assessment of delamination location in CFRP composite plates, a Lamb wave spatial frequency wavenumber imaging method based on laser ultrasonic full-wavefield scanning inspection is proposed in this paper. For a CFRP composite plate specimen containing a delamination, a piezoelectric sensor is arranged to excite a sinusoidal modulation tone-burst signal. A laser transducer is used for pointwise reception to obtain Lamb waves full-wavefield data. Frequency domain filtering were performed on the wavefield signal to obtain single-mode wavefield. Short-space Fourier transform and instantaneous wavenumber analysis were applied to single-mode wavefield signal to obtain a distribution image of Lamb wave spatial wavenumber respectively. At the same time, the Lamb wave dispersion relation in CFRP composite plate is analyzed, and the delamination location is calculated based on this relationship. Finally, it can be seen from the imaging results that instantaneous wavenumber analysis can accurately locate the distance between the delamination and the laser scanning detection surface, but the short-space Fourier transform technology cannot identify the location of defects under the experimental parameters set in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.