Objective-Insulin has both growth-promoting and protective vascular effects in vitro, however the predominant effect in vivo is unclear. We investigated the effects of insulin in vivo on neointimal growth after arterial injury. Methods and Results-Rats were given subcutaneous control (C) or insulin implants (3U/d;I) 3 days before arterial (carotid or aortic) balloon catheter injury. Normoglycemia was maintained by oral glucose and, after surgery, by intraperitoneal glucose infusion (saline in C
Metabolic syndrome is a risk factor for atherosclerosis and restenosis. In metabolic syndrome, insulin resistance coexists with hyperinsulinemia and hyperlipidemia. Hyperlipidemia has growth-promoting effects, whereas insulin has both growth-promoting and growth-inhibitory effects on vascular smooth muscle cells in vitro. The objective of this study was to investigate the effects of hyperlipidemia and hyperinsulinemia on vascular cell growth in vivo after arterial injury. Rats fed a low-fat diet were treated with either subcutaneous blank (LFC) or insulin (LFI) implants. Rats fed a high-fat diet also received blank (HFC) or insulin (HFI) implants. After 3 days, rats received balloon carotid injury, and 14 days later they were sacrificed to measure neointimal area and proliferation. Hyperinsulinemia was present in LFI and HFI and hyperlipidemia was present in HFC and HFI. Neointimal area was higher in HFC (0.153 ± 0.009 mm2, p < 0.05) but lower in LFI (0.098 ± 0.005, p < 0.01) than LFC (0.127 ± 0.005). In HFI (0.142 ± 0.008, p < 0.05) neointimal area was not different from HFC or LFC. In conclusion, insulin reduced neointimal growth, but the effect of insulin was diminished by the high-fat diet. Thus, our results demonstrate an anti-atherogenic effect of insulin in vivo and suggest that in metabolic syndrome insulin resistance rather than hyperinsulinemia is the atherogenic risk factor.
Background/Aims: In our previous studies, rats on insulin treatment (5 U/day) and oral glucose to avoid hypoglycemia had reduced neointimal growth after arterial injury. However, plasma glucose in the insulin-treated rats was lower than normal and the effect of oral glucose remained undetermined. In this study, the effects of normoglycemic hyperinsulinemia and oral glucose or sucrose were investigated in the same model. Methods: Rats were divided into 6 groups: (1) control implants and tap water; (2) insulin implants (5 U/day) and oral glucose + i.p. glucose to avoid any glucose lowering; (3) insulin implants (4 U/day) and oral glucose; (4) insulin implants (4 U/day) and oral sucrose; (5) control implants and oral glucose, and (6) control implants and oral sucrose. Results: Insulin treatment at both doses reduced neointimal area (p < 0.001) 14 days after injury in rats receiving oral glucose but not in those receiving oral sucrose. Oral glucose, without insulin, had no effect on neointimal formation, whereas oral sucrose increased neointimal growth (p < 0.05). Oral sucrose (p < 0.05) but not oral glucose decreased insulin sensitivity measured with hyperinsulinemic clamps. Conclusions: (1) Insulin decreases neointimal growth after arterial injury independent of glucose-lowering or oral glucose administration and (2) oral sucrose per se affects neointimal growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.