Evidence indicates that Helicobacter pylori is the causative agent of chronic gastritis and perhaps gastric malignancy. Extracellular vesicles (EVs) play an important role in the evolutional process of malignancy due to their genetic material cargo. We aimed to evaluate the clinical significance and biological mechanism of H. pylori EVs on the pathogenesis of gastric malignancy. We performed 16S rDNA-based metagenomic analysis of gastric juices either from endoscopic or surgical patients. From each sample of gastric juices, the bacteria and EVs were isolated. We evaluated the role of H. pylori EVs on the development of gastric inflammation in vitro and in vivo. IVIS spectrum and confocal microscopy were used to examine the distribution of EVs. The metagenomic analyses of the bacteria and EVs showed that Helicobacter and Streptococcus are the two major bacterial genera, and they were significantly increased in abundance in gastric cancer (GC) patients. H. pylori EVs are spherical and contain CagA and VacA. They can induce the production of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β by macrophages, and IL-8 by gastric epithelial cells. Also, EVs induce the expression of interferon gamma, IL-17 and EV-specific immunoglobulin Gs in vivo in mice. EVs were shown to infiltrate and remain in the mouse stomach for an extended time. H. pylori EVs, which are abundant in the gastric juices of GC patients, can induce inflammation and possibly cancer in the stomach, mainly via the production of inflammatory mediators from gastric epithelial cells after selective uptake by the cells.
Responsive cooling materials that mimic sweat glands have gained popularity because they are efficient and do not require artificial energy sources. Temperature-responsive hydrogels sweat above their volume transition temperature through the release of water and exhibit excellent cooling ability. However, thus far, practical applications have not been possible because the water in these materials cannot be preserved in cool environments. To address this issue, this paper presents a simple composite of poly(N-isopropylacrylamide) and polydimethylsiloxane that offers excellent on−off control over water evaporation and can be used repeatedly; the proposed composite features an evaporation rate of 2.97 g/h above the lower critical solution temperature (LCST) and 0.08 g/h below the LCST. This 35.7-fold change in the water evaporation rate is comparable to that in mammalian sweat glands. The responsive on−off control relies on the structures of the composite and the dry layers formed on the surface of the composite in cool environments. The proposed material effectively regulates water evaporation and offers a novel, low-cost cooling strategy suitable for numerous applications.
Crystallization engineering is crucial for the preparation of drug delivery systems with precise release behavior and improved stability. Although evaporation has been commonly used to prepare pharmaceutical film formulations, controlled evaporative crystallization to achieve uniform crystal size and shape has rarely been investigated. In this study, ordered submicrometer composite structures of acetaminophen (ACM) and polymers were prepared via directional evaporative crystallization controlled by a temperature gradient. The ACM crystals had submicrometer sizes while retaining the original crystal polymorph and were aligned along the direction of the temperature gradient, resulting in line structures having branches with uniform and oriented crystal structures. Although the use of a polymer did not affect conventional oven-crystallized films, it significantly decreased the melting point and heat of fusion of directionally crystallized films. The formation of ordered submicrometer composite structures must rely more on kinetic parameters than thermodynamic parameters since no significant intrinsic molecular interactions were discovered. A wide range of sustained-release characteristics could be obtained depending on the polymer types. This unique fast directional crystallization method could offer a new opportunity for future film delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.