Fuzzy membership function plays an important role in fuzzy set theory. However, how to measure the information volume of fuzzy membership function is still an open issue. The existing methods to determine the uncertainty of fuzzy membership function only measure the first-order information volume, but do not take higher-order information volume into consideration. To address this issue, a new information volume of fuzzy membership function is presented in this paper, which includes the first-order and the higher-order information volume. By continuously separating the hesitancy degree until convergence, the information volume of the fuzzy membership function can be calculated. In addition, when the hesitancy degree of a fuzzy membership function equals to zero, the information volume of this special fuzzy membership function is identical to Shannon entropy. Two typical fuzzy sets, namely classic fuzzy sets and intuitiontistic fuzzy sets, are studied. Several examples are illustrated to show the efficiency of the proposed information volume of fuzzy membership function.
Dempster-Shafer evidence theory (evidence theory) has been widely used as an efficient method for dealing with uncertainty. In evidence theory, Dempster's rule is the most well-known evidence combination method but it does not work well when the evidence is in high conflict. To improve the performance of combining conflicting evidence, an original and novel evidence combination method is presented based on the Pearson correlation coefficient and weighted graph. The proposed method can
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.