Thin-walled long stringer made of aluminum alloy 7050-T7451 is prone to deformation during transportation, so a research of residual stress relaxation was launched in this paper. The transport resonance stress of long stringer was analyzed based on the power spectral density of road transport acceleration. The residual stress relaxation experiment of aluminum alloy 7050-T7451 under different equivalent stress levels was designed and carried out. According to the amount of residual stress relaxation in the experiment, an analytical model was established with the equivalent stress level coefficient. The deflection range of long stringer was evaluated under different damping ratios. The results show that when the equivalent stress exceeds 0.8σ 0.2 , the residual stress relaxation of the thin-walled samples occurs. The residual stress relaxation increases linearly with the equivalent stress, which is logarithmically related to the loading cycle. The deformation caused by residual stress relaxation of the long stringer is proportional to the square of the length and the bending moment caused by stress rebalance, and inversely proportional to the moment of inertia of the structure. As the damping ratio decreases from 0.03 to 0.01, the total deflection of the long stringer increases from 0 to above 1.55 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.