The functionalized lipid shell of hybrid nanoparticles plays an important role for improving their biocompatibility and in vivo stability. Yet few efforts have been made to critically examine the shell structure of nanoparticles and its effect on cell-particle interaction. Here we develop a microfluidic chip allowing for the synthesis of structurally well-defined lipid-polymer nanoparticles of the same sizes, but covered with either lipid-monolayer-shell (MPs, monolayer nanoparticles) or lipid-bilayer-shell (BPs, bilayer nanoparticles). Atomic force microscope and atomistic simulations reveal that MPs have a lower flexibility than BPs, resulting in a more efficient cellular uptake and thus anticancer effect than BPs do. This flexibility-regulated cell-particle interaction may have important implications for designing drug nanocarriers.
Synthesis of nanomaterials with multi-imaging modality is of great importance in clinical molecular imaging and diagnostics. This work reports novel synthetic strategy to create ultrasmall and hexagonal upconversion nanoparticles (UCNPs), -NaGdF 4 : Yb 3+ , Er 3+ , and -NaGdF 4 : Yb 3+ , Tm 3+ , with inherent magnetic and efficient upconversion properties. The use of new combination of lanthanide chloride and sodium TFA as the precursors for UCNPs gave the best results in terms of size (10-40 nm), crystallinity and morphology, and proved to be cost-and time-saving. Water solubilization of both NaGdF 4 : Yb 3+ , Er 3+ , and -NaGdF 4 : Yb 3+ , Tm 3+ UCNPs was achieved by homogeneous polymer coating using amphiphilic poly(acrylic acid) derivatives. The strong upconversion and magnetic properties were maintained after extensive polymer coating process. To see the potential of the UCNPs for biological applications, the surface of NaGdF 4 : Yb 3+ , Er 3+ UCNPs were functionalized with Ni-nitrilotriacetate (NiNTA) moiety. The remarkable specificity of these NiNTAUCNPs for the oligohistidine peptide was clearly shown by both magnetic resonance and optical imaging. Finally, the cellular uptake of these UCNPs was investigated by fluorescence microscope using spectral imaging technique.
Neuronal SNARE proteins mediate neurotransmitter release at the synapse by facilitating the fusion of vesicles to the presynaptic plasma membrane. Cognate v-SNAREs and t-SNAREs from the vesicle and the plasma membrane, respectively, zip up and bring about the apposition of two membranes attached at the Cterminal ends. Here, we demonstrate that SNARE zippering can be modulated in the midways by wedging with small hydrophobic molecules. Myricetin, which intercalated into the hydrophobic inner core near the middle of the SNARE complex, stopped SNARE zippering in motion and accumulated the trans-complex, where the N-terminal region of v-SNARE VAMP2 is in the coiled coil with the frayed C-terminal region. Delphinidin and cyanidin inhibited N-terminal nucleation of SNARE zippering. Neuronal SNARE complex in PC12 cells showed the same pattern of vulnerability to small hydrophobic molecules. We propose that the half-zipped trans-SNARE complex is a crucial intermediate waiting for a calcium trigger that leads to fusion pore opening.polyphenol | hemifusion | neurotransmission | neuron N eurotransmitter release at the synapse, which serves as the brain's major form of cell-cell communication, requires the fusion of synaptic vesicles with the presynaptic plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate this synaptic fusion event (1-5), and the formation of a four-helical bundle (6-8) is believed to generate the force required for fusion. A zipper model has been proposed for SNARE complex formation, initiating assembly at the N-terminal region and zipping toward the C-terminal membrane-proximal region (6-9). To account for fast neuroexocytosis, the SNAREs in primed readily releasable vesicles have been proposed as being partially zipped in the trans-configuration bridging the two membranes.Although the structure of the fully assembled cis-SNARE complex, which is believed to represent the postfusion state, has been determined (10), the structure of the trans-complex is poorly understood and is purely imaginary, most likely because of its inherently transient nature. Precisely linking the degrees of SNARE zippering to specific stages of membrane fusion seems to be prerequisite for determining the structure of the trans-complex and for providing answers to the questions of how fast fusion is controlled in neurons and how the trans-complexes set up the readily releasable vesicles with other regulatory proteins.Here, we show that certain small hydrophobic molecules (SHM) enable layer-by-layer control of SNARE zippering by wedging into various points of the SNARE zipper. SNAREmediated membrane fusion is dissected via this wedge-like action of SHMs. Analysis of the captured replication fork-like structure allowed us to understand the basic architecture of the putative trans-complex. Results SNARE-Driven Membrane Fusion Can Be Controlled by SHMs withDifferent Modes of Action. As an initial step to examine the feasibility of whether SHM works as a wedge for the SNARE zipp...
Multimodal nanoparticles have been extensively studied for target-specific imaging and therapy of various diseases, including cancer. In this study, radiolabeled arginine-glycine-aspartic acid (RGD)-functionalized Er 31 /Yb 31 co-doped NaGdF 4 upconversion nanophosphors (UCNPs) were synthesized and evaluated as a multimodal PET/MR/optical probe with tumor angiogenesisspecific targeting properties. Methods: A dimeric cyclic RGDyk ((cRGDyk) 2 ) peptide was conjugated to polyacrylic acid-coated NaGdF 4 :Yb 31 /Er 31 UCNPs along with polyethylene glycol molecules and was consecutively radiolabeled with 124 I. In vitro cytotoxicity testing was performed for 3 d. Upconversion luminescence imaging of (cRGDyk) 2 -UCNP was performed on U87MG cells with a laboratory-made confocal microscope. In vivo small-animal PET and clinical 3-T T1-weighted MR imaging of 124 I-labeled RGD-functionalized UCNPs was acquired with or without blocking of cyclic RGD peptide in a U87MG tumor model. Inductively coupled plasma mass spectrometry and biologic transmission electron microscopy were done to evaluate gadolinium concentration and UCNP localization, respectively. Results: Polymer-coated UCNPs and dimeric RGD-conjugated UCNPs were monodispersely synthesized, and those of hydrodynamic size were 30 6 8 nm and 32 6 9 nm, respectively. (cRGDyk) 2 -UCNPs have a low cytotoxic effect on cells. Upconversion luminescence signals of (cRGDyk) 2 -UCNP were specifically localized on the surface of U87MG cells. 124 I-c(RGDyk) 2 -UCNPs specifically accumulated in U87MG tumors (2.8 6 0.8 vs. 1.3 6 0.4 percentage injected dose per gram in the blocking experiment), and T1-weighted MR images showed significant positive contrast enhancement in U87MG tumors. Tumor localization of 124 I-c(RGDyk) 2 -UCNPs was confirmed by inductively coupled plasma mass spectrometry and biologic transmission electron microscopy analysis. Conclusion: These results suggest that 124 Ilabeled RGD-functionalized UCNPs have high specificity for a v b 3 integrin-expressing U87MG tumor cells and xenografted tumor models. Multimodal UCNPs can be used as a platform nanoparticle with multimodal imaging for cancer-specific diagnoses.
Ni-nitrilotriacetic acid (NTA) functionalized CdSe/ZnS quantum dots (QDs) were exploited as a site-specific labeling agent of histidine-tagged biomolecules in live cells; the QDs were found to be water-soluble, aggregation free and stable for several months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.