Critical firing levels (CFLs) of single motor units (MU?.) in the long head of the human biceps brachii muscle were determined in combinations of two isometric tasks flexion of the elbow, supination of the lower arm, and exorotation of the humerus, as well as the corresponding antagonistic tasks. The MU activity was recorded by 25-pm bipolar wire electrodes. Four main patterns of MU recruitment, related to the recording location in the muscle, were found: (i) MUs active only when flexing the elbow were located mostly laterally. (ii) MUs active only when supinating were all located medially. (iii) MUs whose CFL depended on a linear combination of flexion and supination forces were all located medially. Some of these MUs could not be recruited during pronation. (iv) Nonlinearly behaving MUs, located centrally. The relative weights of tlexion and supination input were constant for all units, whose CFL depended on a linear sum of flexion and supination forces, as well as for the nonlinearly behaving units. Supination and exorotation showed equivalent CFL changes when they were combined with the flexion task. Extension did not change the CFL for supination-or exorotation tasks. No clear difference was found between the ratios of the peak twitch forces in flexion and supination direction for laterally and medially located small muscle areas or single MUs. A simple model of the motoneuron pool organization is proposed to explain our findings.Abbreviations: CFL-critical firing level, MU-motor unit, BLH-human biceps brachii long head, MVC-maximum voluntary contraction, S-supination, E-exorotation, F-flexion.
1. The behaviour of motor units in the m. biceps brachii (long head), in the m. brachialis and in the m. supinator during slow isometric contraction and relaxation was studied when subjects were performing different motor tasks. These tasks were: flexion of the elbow joint, supination of the forearm and exorotation of the humerus. Motor unit activity was recorded by means of bipolar fine wire electrodes. In the long head of the biceps, motor unit activity was recorded at medial, central and lateral sites.2. When the subject relaxed from flexion, the firing rate of motor units located in the biceps and the brachialis was always found to be lower than that at the corresponding level of flexion force during contraction. The firing rate during relaxation decreased slowly and almost linearly with force. However, during relaxation from supination or exorotation, the firing rate of motor units at medial and central locations in the biceps was more or less constant until decruitment. The firing rate of motor units of the supinator during relaxation from supination decreased slowly and was lower than during contraction.3. Motor units located medially and centrally in the biceps had decruitment thresholds for flexion that were lower than their recruitment thresholds. Motor units on the lateral side of the biceps did not show such a difference. In the brachialis decruitment thresholds for flexion were usually higher than the recruitment thresholds. Differences between decruitment and recruitment thresholds for motor units in the biceps were much more pronounced for supination and exorotation than for flexion. For motor units in the supinator the decruitment threshold during relaxation from supination was higher than the recruitment threshold. 4. The time that had passed after the onset of firing of a motor unit did not influence its decruitment threshold. If, after complete relaxation, the exerted force was increased again, it appeared that the recruitment threshold was changed. It took about 4 s to reach the original recruitment threshold.5. It is concluded that the relation between the firing rate of a motor unit and totalThe authors' names are in alphabetical order. * To whom correspondence should be addressed. J. J. DENIER VAN DER GON AND OTHERS exerted force depends on the phase of contraction. This relation varies within a muscle and between muscles. Furthermore, the results indicate an interchange of activity within the motoneurone pools of the synergists involved in isometrical motor tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.