Hypothalamic neurons control a variety of important hormonal and behavioral functions. Little is known, however, about the neurotrophic factors that these neurons may require for survival and/or maintenance of their differentiated functions. We conducted experiments to examine this issue, utilizing a combination of immunohistochemical, in situ hybridization and cell culture approaches. We found that the low affinity receptor for nerve growth factor (p75 NGFR) is present in small subsets of hypothalamic peptidergic neurons identified as such by their content of galanin, luteinizing hormone-releasing hormone (LHRH) and vasointestinal peptide (VIP). More prominently, however, examination of hypothalamic dopaminergic (DA) neurons for the presence of p75 NGFR-like immunoreactivity revealed that the receptor was present on tyrosine hydroxylase (TH)-positive neurons of the zona incerta and periventricular region, but not on neuroendocrine DA neurons of the tuberoinfundibular region. In situ hybridization experiments using a p75 NGFR cRNA confirmed this distribution. Regardless of the presence or absence of p75 NGFR, neither DA group expresses trkA mRNA, indicating that these two major hypothalamic subsets of DNA neurons are NGF-insensitive. A substantial fraction of TH mRNA-positive cells in the zona incerta expresses trkB mRNA, which encodes the receptor for brain derived neurotrophic factor (BDNF); in turn BDNF supports the in vitro survival of hypothalamic TH neurons bearing p75-NGFR, suggesting that BDNF is trophic for DNA neurons of the zona incerta. In contrast, tuberoinfundibular DA neurons do not express trkB mRNA, but some have trkC mRNA, which encodes the receptor for neurotrophin-3 (NT-3). The in vitro survival of TH neurons devoid of p75-NGFR is supported by NT-3, implying that NT-3 may be trophic for a subset of tuberoinfundibular DA neurons. These results suggest that, in spite of expressing an identical neurotransmitter phenotype, anatomically and functionally segregated DA neurons of the neurodendocrine brain are sustained by different neurotrophic factors.
Nitric oxide (NO) has been shown to contribute to ovarian development and function. In non-ovarian tissues NO can be altered by ethanol (ETOH), a drug considered to be a gonadal toxin in men as well as male and female rats. The present study was undertaken to determine if some of the detrimental effects of chronic ETOH exposure on prepubertal ovarian function could be due to ETOH-induced alterations in the intraovarian NO system. Rats were implanted with intragastric cannulae on day 24 and began receiving control or ETOH diets on day 29. All rats were killed on day 34, determined to be in the late juvenile stage of development, and their ovaries and blood were collected. We analyzed the expression of the two constitutive forms of nitric oxide synthase (NOS), i.e. neuronal (n) NOS and endothelial (e) NOS, as well as the inducible (i) form of NOS protein in the ovaries of control and ETOH-treated rats by Western immunoblotting. Results demonstrate that eNOS protein increased markedly (P<0·02; 140 kDa) in ETOH-treated rats compared with controls. ETOH treatment did not alter the protein expression of nNOS (155 kDa) and only slightly increased that of iNOS (130 kDa). We also assessed NOS activity as determined by nitrite accumulation and by the conversion of -[14 C]arginine to -[ 14 C]citrulline. In this regard, the ETOH-treated animals showed an increase in ovarian nitrite generation (P<0·05), as well as an increase in ovarian citrulline formation (P<0·0001), when compared with control animals. Along with the above described ETOH-induced increases in ovarian eNOS and NO activity, the serum levels of estradiol were concomitantly suppressed (P<0·001) in the ETOH-treated rats. These results demonstrate for the first time the ETOH-induced changes in the prepubertal ovarian NO/NOS system, and suggest that these alterations contribute to the detrimental actions of the drug on prepubertal ovarian development and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.