Certain glial cells of the hypothalamus have been implicated in the neuroendocrine control of reproductive development. Hypothalamic astrocytes appear to exert this function via a cell-cell interactive mechanism that involves the production of transforming growth factor alpha (TGF alpha), a polypeptide able to affect both glial and neuronal functions in the CNS. In the hypothalamus, TGF alpha stimulates neuronal secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development, via activation of epidermal growth factor receptors (EGFR). Since astrocytes but not LHRH neurons express EGFR, it has been postulated that the stimulatory effect of TGF alpha on LHRH release is not exerted directly on LHRH neurons, but rather via glial intermediacy. The present experiments were undertaken to define whether TGF alpha is able to exert paracrine/autocrine effects on isolated hypothalamic astrocytes, and to determine if estradiol-previously shown to increase TGF alpha mRNA levels in the hypothalamus of immature animals--can act directly on hypothalamic astrocytes to upregulate TGF alpha gene expression. Treatment with either TGF alpha or its structural homolog, epidermal growth factor (EGF), increased TGF alpha mRNA levels within 8 hr of exposure; the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) was similarly effective. Blockade of EGFR with either tyrphostin RG-50864, an inhibitor of tyrosine kinase activity, or a monoclonal antibody that prevents ligand binding abolished the upregulatory effect of TGF alpha on TGF alpha mRNA levels. In contrast to hypothalamic astrocytes, cerebellar astrocytes did not respond to either TGF alpha or EGF with changes in TGF alpha mRNA abundance.(ABSTRACT TRUNCATED AT 250 WORDS)
Hypothalamic neurons control a variety of important hormonal and behavioral functions. Little is known, however, about the neurotrophic factors that these neurons may require for survival and/or maintenance of their differentiated functions. We conducted experiments to examine this issue, utilizing a combination of immunohistochemical, in situ hybridization and cell culture approaches. We found that the low affinity receptor for nerve growth factor (p75 NGFR) is present in small subsets of hypothalamic peptidergic neurons identified as such by their content of galanin, luteinizing hormone-releasing hormone (LHRH) and vasointestinal peptide (VIP). More prominently, however, examination of hypothalamic dopaminergic (DA) neurons for the presence of p75 NGFR-like immunoreactivity revealed that the receptor was present on tyrosine hydroxylase (TH)-positive neurons of the zona incerta and periventricular region, but not on neuroendocrine DA neurons of the tuberoinfundibular region. In situ hybridization experiments using a p75 NGFR cRNA confirmed this distribution. Regardless of the presence or absence of p75 NGFR, neither DA group expresses trkA mRNA, indicating that these two major hypothalamic subsets of DNA neurons are NGF-insensitive. A substantial fraction of TH mRNA-positive cells in the zona incerta expresses trkB mRNA, which encodes the receptor for brain derived neurotrophic factor (BDNF); in turn BDNF supports the in vitro survival of hypothalamic TH neurons bearing p75-NGFR, suggesting that BDNF is trophic for DNA neurons of the zona incerta. In contrast, tuberoinfundibular DA neurons do not express trkB mRNA, but some have trkC mRNA, which encodes the receptor for neurotrophin-3 (NT-3). The in vitro survival of TH neurons devoid of p75-NGFR is supported by NT-3, implying that NT-3 may be trophic for a subset of tuberoinfundibular DA neurons. These results suggest that, in spite of expressing an identical neurotransmitter phenotype, anatomically and functionally segregated DA neurons of the neurodendocrine brain are sustained by different neurotrophic factors.
It is becoming increasingly evident that the secretory activity of LHRH neurons is regulated not only by transsynaptic inputs but also by trophic molecules of glial and neuronal origin. The present experiments were undertaken to gain insights into the potential cell-cell mechanisms by which basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF alpha), two growth factors produced in the hypothalamus, may affect LHRH neuronal function. Northern blot analysis showed that the LHRH-producing cell line GT1-7 contains the messenger RNA (mRNA) encoding the type 1 fibroblast growth factor receptor (FGFR-1) but not that encoding the epidermal growth factor (EGF) receptors, which mediates the biological actions of both TGF alpha and EGF. Ligand-induced receptor phosphorylation experiments demonstrated that GT1-7 cells possess biologically active FGFR-1s but not EGF receptors. Exposure of the cells to bFGF resulted not only in FGFR-1 tyrosine phosphorylation, but also in tyrosine phosphorylation of phospholipase C gamma, one of the initial enzymes in the intracellular signaling cascade initiated by FGFR activation. GT1-7 cells proliferated in response to this activation. Despite the presence of biologically active receptors, bFGF did not significantly stimulate release of the mature LHRH decapeptide. Instead, bFGF increased the steady-state levels of the mRNA encoding the LHRH precursor processing endoprotease PC2, with a time course comparable to that of phorbol esters, suggesting that, as shown in the companion paper, the actions of the growth factor on LHRH neurons involve facilitation of the initial step in LHRH prohormone processing. The increase in PC2 gene expression was not accompanied by changes in LHRH mRNA levels. Unlike these direct actions of bFGF on GT-1 cells, TGF alpha appears to act indirectly via astroglial intermediacy. Exposure of GT1-7 cells to TGF alpha or EGF failed to affect several parameters of cellular activity including LHRH release, LHRH and PC2 mRNA levels, and cell proliferation. In contrast, astrocyte culture medium conditioned by treatment with TGF alpha led to sustained stimulation of LHRH release with no changes in LHRH gene expression and a transient increase in PC2 mRNA levels. Although no definitive evidence for the presence of FGFR-1 in normal LHRH neurons could be obtained by either double immunohistochemistry or double in situ hybridization procedures, fetal LHRH neurons in primary culture responded to bFGF with neurite outgrowth. Thus, normal LHRH neurons may have an FGFR-1 content too low for detection by regular histochemical procedures, and/or detectable expression of the receptor may be confined to a much earlier developmental stage. The mitogenic effect of bFGF on GT1-7 cells supports this possibility and suggests a role for FGF in the cell proliferation events that precede acquisition of the LHRH neuronal phenotype. It appears that once this phenotype is established, bFGF may promote the differentiation of LHRH neurons. The results also suggest that th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.