Hayne, M. (2012). Linking structural and electronic properties of high-purity self-assembled GaSb/GaAs quantum dots. Physical Review B, 86(3) Please check the document version of this publication:• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement: www.tue.nl/taverne
Take down policyIf you believe that this document breaches copyright please contact us at: openaccess@tue.nl providing details and we will investigate your claim. We present structural, electrical, and theoretical investigations of self-assembled type-II GaSb/GaAs quantum dots (QDs) grown by molecular beam epitaxy. Using cross-sectional scanning tunneling microscopy (X-STM) the morphology of the QDs is determined. The QDs are of high purity (∼100% GaSb content) and have most likely the shape of a truncated pyramid. The average heights of the QDs are 4-6 nm with average base lengths between 9 and 14 nm. Samples with a QD layer embedded into a pn-diode structure are studied with deep-level transient spectroscopy (DLTS), yielding a hole localization energy in the QDs of 609 meV. Based on the X-STM results the electronic structure of the QDs is calculated using 8-band k·p theory. The theoretical localization energies are found to be in good agreement with the DLTS results. Our results also allow us to estimate how variations in size and shape of the dots influence the hole localization energy.
We have designed and built an optical system to collect light that is generated in the tunneling region of a low-temperature scanning tunneling microscope. The optical system consists of an in situ lens placed approximately 1.5 cm from the tunneling region and an ex situ optical lens system to analyze the emitted light, for instance, by directing the light into a spectrometer. As a demonstration, we measured tip induced photoluminescence spectra of a gold surface. Furthermore, we demonstrate that we can simultaneously record scanning tunneling microscope induced luminescence and topography of the surface both with atomic resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.