The liver is a primary site for xenobiotics detoxification, and its metabolism is readily altered by toxicity. The kidney is a common target for toxic xenobiotics due to its capacity to extract and concentrate toxic substances by highly specialized cells. So, they are the target organs of sodium fluoride toxicity. The aim of this review is to highlight on hepatorenal oxidative stress and pathophysiological changes induced by treatment of experimental animals with sodium fluoride. Our review shows fluoride toxicosis caused an elevation in the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, acid phosphatase, and the level of total bilirubin, and reduction in the serum levels of total protein, albumin, and globulins, and serious histopathological changes in the hepaic tissues. Also, NaF administration caused increases in serum urea, creatinine, uric acid, sodium ions, and chloride ions levels and serious histopathological changes in the kidney tissues. Treatment of experimental animals with NaF induced oxidative stress in hepatic and renal tissues. It can be concluded that administration of sodium fluoride to experimental animals induced oxidative stress, serious hepatorenal histopathological changes, and disturbance in liver and kidney functions. So, human should be advised to decrease exposure to sodium fluoride to decrease the harmful effects of NaF on liver and kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.