This study conducts a comparative evaluation the effect of using palm kernel oil (PKO), pure petroleum diesel and their blends (B5, B10, B20, B30, B40, and B100), on the performance of a four-cylinder CI diesel engine (David Brown 990: 58hp; 2WD), at Farm Power and Machinery Test laboratory Centre (FPMTLC), Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka. The objective of the study was to determine the fuel consumption rates, energy expended, brake specific fuel consumption, and brake thermal efficiency, under varying operating speeds (700 – 1900rpm) at constant torque. Each fuel test was conducted using the Heenan-Froude hydraulic dynamometer engine-test-bed; pure petroleum diesel (B0) was used to generate the baseline data. Variables calculated were analyzed, then compared with each other to determine the differences in the engine performance and also to determine the optimum test fuel. The results obtained show that B10 had the overall optimum energy output, fuel consumption rates, and brake specific fuel consumption of 5431.809J, 3.42E-07 m3/s, and 0.16569l/KWh, respectively at the highest engine speed of 1900. B10 had an excellent brake thermal efficiency of 60.6% but was not better than B100, which showed a higher value of 66.95%. From the analysis, B10 is the optimum test fuel and can be used as an alternative fuel in David Brown 990 (58hp; 2WD) or similar CI diesel engines without any engine modification, even though B100 showed potential as an alternative to fossil diesel. Biofuel production grows through integrated aquaculture and algae production; the algae oil will serve as a raw material for biofuel production Keywords: Blends, Biodiesel, Brake Specific Consumption, Diesel Engine, Fuel Consumption rate, Thermal Efficiency.
The benefits and impacts of enhanced cellulosic ethanol (CE) production, the major features of existing production processes, and some current research challenges of major pretreatment processes are presented. The prospects of enhanced CE production, especially in developing economies like Nigeria are highlighted. We conclude that in order to reap the promising prospects and conquer the challenges and negative impacts of enhanced CE production, current researches for production of cellulosic ethanol must be focused on the development of processes that are capable of liberating and fermenting lignocellulose into bioethanol at faster rates, higher yields, and overall technical and economic efficiency. These researches should concentrate on the development of cheaper enzymes, genetically engineered microorganisms, and cost-effective thermochemical processes in order to accomplish the much-needed breakthrough in cellulosic biofuel production. Properly targeted innovative researches on cellulosic ethanol production processes are the sure route to effective reduction of global dependence on nonrenewable fossil fuels. The needed research breakthroughs will obviously be based on innovative integration of processes rather than on the improvement of the well-known individual processes of bioethanol production. http://dx.doi.org/10.4314/njt.v36i1.32
This study examined the cost of adopting carbon capture and storage (CCS) as a technology when retrofitting current gas‐fired plants in Nigeria to reduce CO2 emissions. Studies show that Nigeria has abandoned or depleted oil fields; it has large coal reserves that are potential sites for CO2 storage. Five power plants with capacities of 1074, 675, 624, 480, and 191 MW were studied using the Integrated Environmental Control Model (IECM) 9.5. The IECM 9.5 was calibrated using available data and some default values to model the performance and cost of retrofitting the power plants. The transport and storage system chosen was pipeline and enhance oil recovery (EOR). The results show that net plant efficiency, CO2 emission rate, quantity of CO2 captured, and CCS energy penalty are 35.78 ± 1.69%, 0.0668 ± 0.0138 kg MWh−1, 0.4478 ± 0.0274 kg MWh−1, and 0.2588 ± 0.0386%, respectively. The results also show that total capital requirement, cost of electricity, and percentage increase in cost of electricity were 1888.2 ± 336.9 $ kW−1, 114.44 ± 10.15 $ MWh−1, and 52.04 ± 3.58%, respectively. In the same manner, the cost of CO2 avoided, cost of capture, and added cost of CCS were 84.442 ± 27.73 $ MWh−1, 60.02 ± 22.51 $ tonne−1, and 28.44 ± 10.16 $ MWh−1, respectively. Further analysis shows that it would be advantageous to retrofit 1074 MW plants because this has a 46.51% increase in cost, which is lower than the cost for the other retrofitted plants. The total CO2 emission rate dropped from 0.4282 ± 0.014 to 0.0668 ± 0.0138 kg MWh−1; this drop is significant as it shows that CCS can reduce the amount of CO2 emitted from Nigeria. The study recommends that CCS is a viable CO2 emission‐reduction alternative but incentives must be put in place to cushion the high cost of electricity. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.