Abstract-In this paper we investigate the range resolution of transmit waveform designs matched to extended targets. We specifically look at eigenwaveform design which is also known as SNR-based illumination waveform design. To that end, we evaluate some ambiguity functions of radar systems employing eigenwaveforms. We consider some example targets and plot the corresponding ambiguity functions. Unlike traditional waveforms whose responses totally dictate the shape of the ambiguity function, both matched illumination waveform and extended target response contribute to the shape of the ambiguity function. In other words, range and Doppler resolutions are not just functions of the transmit waveform but of the target response itself which makes for interesting ambiguity functions. Moreover, we also evaluate the detection probability of eigenwaveforms matched to extended targets and show the performance improvement over wideband pulsed waveform designs.
Linear frequency modulation (LFM) waveforms have high Doppler-shift endurance because of the relative wide modulation bandwidth to the Doppler variation. The Doppler shift of the moving objects, nevertheless, constantly introduces obscure detection range offsets despite the exceptional Doppler tolerance in detection energy loss from LFM. An up-down-chirped LFM waveform is an efficient scheme to resolve the true target location and velocity by averaging the detection offset of two detection pairs from each single chirp LFM in opposite slopes. However, in multiple velocity-vary-target scenarios, without an efficient grouping scheme to find the detection pair of each moving target, the ambiguous detection results confine the applicability of precise target estimation by using these Doppler-tolerated waveforms. A succinct, three-multi-Doppler-shift-compensation (MDSC) scheme is applied to resolve the range and velocity of two moving objects by sorting the correct LFM detection pair of each target, even though the unresolvable scenarios of two close-by targets imply a fatal disability of detecting objects under a cluttered background. An innovative clutter-suppressed multi-Doppler-shift compensation (CS-MDSC) scheme is introduced in this research to compensate for the critical insufficient of resolving two overlapping objects with different velocities by solely MDSC. The CS-MDSC has been shown to successfully overcome this ambiguous scenario by integrating Doppler-selective moving target indication (MTI) filters to mitigate the distorting of near-zero-Doppler objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.