Linear frequency modulation (LFM) waveforms have high Doppler-shift endurance because of the relative wide modulation bandwidth to the Doppler variation. The Doppler shift of the moving objects, nevertheless, constantly introduces obscure detection range offsets despite the exceptional Doppler tolerance in detection energy loss from LFM. An up-down-chirped LFM waveform is an efficient scheme to resolve the true target location and velocity by averaging the detection offset of two detection pairs from each single chirp LFM in opposite slopes. However, in multiple velocity-vary-target scenarios, without an efficient grouping scheme to find the detection pair of each moving target, the ambiguous detection results confine the applicability of precise target estimation by using these Doppler-tolerated waveforms. A succinct, three-multi-Doppler-shift-compensation (MDSC) scheme is applied to resolve the range and velocity of two moving objects by sorting the correct LFM detection pair of each target, even though the unresolvable scenarios of two close-by targets imply a fatal disability of detecting objects under a cluttered background. An innovative clutter-suppressed multi-Doppler-shift compensation (CS-MDSC) scheme is introduced in this research to compensate for the critical insufficient of resolving two overlapping objects with different velocities by solely MDSC. The CS-MDSC has been shown to successfully overcome this ambiguous scenario by integrating Doppler-selective moving target indication (MTI) filters to mitigate the distorting of near-zero-Doppler objects.
Frequency hopping spread spectrum (FHSS) applies widely to communication and radar systems to ensure communication information and channel signal quality by tuning frequency within a wide frequency range in a random sequence. An efficient signal processing scheme to resolve the timing and duration signature from an FHSS signal provides crucial information for signal detection and radio band management purposes. In this research, hopping time was first identified by a two-dimensional temporal correlation function (TCF). The timing information was shown at TCF phase discontinuities. To enhance and resolve the timing signature of TCF in a noisy environment, three stages of signature enhancement and morphological matching processes were applied: first, computing the TCF of the FHSS signal and enhancing discontinuities via wavelet transform; second, a dual-diagonal edge finding scheme to extract the timing pattern signature and eliminate mismatching distortion morphologically; finally, Hough transform resolved the agile frequency timing from purified line segments. A grand-scale Monte Carlo simulation of the FHSS signals with additive white Gaussian noise was carried out in the research. The results demonstrated reliable hopping time estimation obtained in SNR at 0 dB and above, with a minimal false detection rate of 1.79%, while the prior related research had an unattended false detection rate of up to 35.29% in such a noisy environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.