Abstract:We report on the measurement of the frequency noise power spectral density in a distributed feedback quantum cascade laser over a wide temperature range, from 128 K to 303 K. As a function of the device temperature, we show that the frequency noise behavior is characterized by two different regimes separated by a steep transition at ≈200 K. While the frequency noise is nearly unchanged above 200 K, it drastically increases at lower temperature with an exponential dependence. We also show that this increase is entirely induced by current noise intrinsic to the device. In contrast to earlier publications, a single laser is used here in a wide temperature range allowing the direct assessment of the temperature dependence of the frequency noise. Baillargeon, and A. Y. Cho, "Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers," Proc. SPIE 3758, 23-33 (1999). 4. T. L.
We demonstrate the effect of rapid thermal annealing on heavily Si-doped AlN/GaN quantum wells. After 1000°C annealing during 5, 10, and 20 min, the dominant effect was interdiffusion of Si rather than intermixing between the Al and Ga atoms. Both their original value and the magnitude of the changes after annealing reveal that intersubband absorption and photovoltage are related to two different optical transitions as follows: absorption occurs in the 1 to 2 intersubband transition, whereas photovoltage is due to a subsequent process from the 1 to 2 and the manifold of 2 to higher order transitions.Impurity interdiffusion and quantum well ͑QW͒ intermixing are two versatile techniques which have seen widespread use in many semiconductor based technologies. They are used for the fabrication of high quality stripe lasers,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.