Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis.
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Troxerutin (TRX), a semi-synthetic flavonoid extracted from Dimorphandra gardneriana, has been reported as a potent antioxidant and anti-inflammatory agent. In the present study, we aimed to evaluate the effect of TRX on 5-FU-induced intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, TRX-50, TRX-100, TRX-150, Celecoxib (CLX), and CLX + TRX-100. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), mast and goblet cell counts, immunohistochemical analysis, and cyclooxygenase-2 (COX-2) activity. Compared to the saline treatment, the 5-FU treatment induced intense weight loss and reduction in villus height. TRX treatment (100 mg/kg) prevented the 5-FU-induced histopathological changes and decreased oxidative stress by decreasing the MDA levels and increasing GSH concentration. TRX attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. TRX also reversed the depletion of goblet cells. Our findings suggest that TRX at a concentration of 100 mg/kg had chemopreventive effects on 5-FU-induced intestinal mucositis via COX-2 pathway.
Leishmaniasis is an infectious disease that affects both animals and humans, caused by flagellated parasites belonging to the genus Leishmania. The disease is estimated to reach about 700,000 to 1 million people, causing the deaths of 20 to 30,000 individuals annually. Thus, the present study aims to perform molecular docking tests and evaluation of antileishmania activity in vitro of a ruthenium complex with epiisopiloturine and nitric oxide. AutoDockTools-1.5.6 software was used to perform molecular docking tests. Molecular targets were considered rigid, and Epiruno 2 considered flexible. The genetic algorithm Lamarckian (AGL) with global search and pseudo-Solis and Wets with local search were the methods adopted in the docking. The most promising results of molecular interaction were achieved in the targets Pteridine reductase and UDP-glucose Pyrophosphorylase with rates of −10.68 Kcal•mol −1 and −10.51 Kcal•mol −1 , respectively. This demonstrates that Epiruno 2 has molecular affinity with the targets of L. major. In vitro assays prove the antileishmania activity of How to cite this paper:
Leishmaniasis is an infectious disease that affects both animals and humans, caused by flagellated parasites belonging to the genus Leishmania may present in different clinical forms depending on the infecting strain and the immune reaction of the host. The disease is estimated to reach about 700,000 to 1 million people, causing the deaths of 20 to 30,000 individuals annually. Thus, the present study aims to perform a molecular coupling simulation of the ruthenium complex with epiisopiloturin and nitric oxide against the protein Nucleoside diphosphate kinase from Leishmania amazonensis. The NDK 3D molecule was extracted from the PDB nucleic proteins and acids database. The 3D molecular structure of the Epiruno2 complex was designed using gaussview 5.0 software. The NDK target and Epiruno2 complex were prepared for docking simulations, where NDK was considered rigid and Epiruno2 was considered flexible. The Epiruno2 complex presented a good molecular affinity rate with the target protein, making it attractive for experimental trials in laboratories for Leishmania's NDK protein and NDKs of other pathogens, however, the drug miltefosin presented low molecular affinity for the same target, corroborating studies presented in the literature on the reduced efficacy of current drugs against leishmaniosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.