The transcription factor gene MYB was identified recently as an oncogene that is rearranged/duplicated in some human leukemias. Here we describe a new mechanism of activation of MYB in human cancer involving gene fusion. We show that the t(6;9)(q22-23;p23-24) translocation in adenoid cystic carcinomas (ACC) of the breast and head and neck consistently results in fusions encoding chimeric transcripts predominantly consisting of MYB exon 14 linked to the last coding exon(s) of NFIB. The minimal common part of MYB deleted as the result of fusion was exon 15 including the 3 -UTR, which contains several highly conserved target sites for miR-15a/16 and miR-150 microRNAs. These microRNAs recently were shown to regulate MYB expression negatively. We suggest that deletion of these target sites may disrupt repression of MYB leading to overexpression of MYB-NFIB transcripts and protein and to activation of critical MYB targets, including genes associated with apoptosis, cell cycle control, cell growth/angiogenesis, and cell adhesion. Forced overexpression of miR-15a/16 and miR-150 in primary fusion-positive ACC cells did not significantly alter the expression of MYB as compared with leukemic cells with MYB activation/duplication. Our data indicate that the MYB-NFIB fusion is a hallmark of ACC and that deregulation of the expression of MYB and its target genes is a key oncogenic event in the pathogenesis of ACC. Our findings also suggest that the gain-offunction activity resulting from the MYB-NFIB fusion is a candidate therapeutic target.chromosome translocation ͉ fusion oncogene ͉ miRNA ͉ adenoid cystic carcinoma F usion genes are potent oncogenes resulting from chromosome rearrangements, in particular translocations. Most fusion genes identified thus far have been in hematological disorders and mesenchymal neoplasms, and only a few have been found in carcinomas (1). This paucity probably results from an inability to discover these rearrangements rather than from a true lack of such genes in carcinomas. The recent discovery that the majority of prostate cancers harbor ETS gene fusions (2) is in line with this reasoning. Finding as yet unidentified fusion oncogenes in other carcinomas could provide important insights into the molecular pathogenesis of these cancers and also might facilitate the development of new targeted therapies.We previously have identified a recurrent and tumor-specific t(6;9)(q22-23;p23-24) translocation in adenoid cystic carcinoma (ACC) of the head and neck (3). The translocation has been found as the sole cytogenetic anomaly in several cases, indicating that it is a primary rearrangement in this carcinoma.ACC has been known as a histologically distinctive neoplasm for nearly 150 years. It is among the most common carcinomas of the salivary glands (4) but also may arise in other exocrine glands, such as in the breast, and in the cervix, vulva, and tracheobronchial tree (5). ACC usually is an aggressive, although slowly growing, cancer with a long-term poor prognosis. Most patients (80-90%) with ACC ...
Mucoepidermoid carcinomas (MECs) of the salivary and bronchial glands are characterized by a recurrent t(11;19)(q21;p13) translocation resulting in a MECT1-MAML2 fusion in which the CREB-binding domain of the CREB coactivator MECT1 (also known as CRTC1, TORC1 or WAMTP1) is fused to the transactivation domain of the Notch coactivator MAML2. To gain further insights into the molecular pathogenesis of MECs, we cytogenetically and molecularly characterized a series of 29 MECs. A t(11;19) and/or an MECT1-MAML2 fusion was detected in more than 55% of the tumors. Several cases with cryptic rearrangements that resulted in gene fusions were detected. In fusion-negative MECs, the most common aberration was a single or multiple trisomies. Western blot and immunohistochemical studies demonstrated that the MECT1-MAML2 fusion protein was expressed in all MEC-specific cell types. In addition, cotransfection experiments showed that the fusion protein colocalized with CREB in homogeneously distributed nuclear granules. Analyses of potential downstream targets of the fusion revealed differential expression of the cAMP/CREB (FLT1 and NR4A2) and Notch (HES1 and HES5) target genes in fusion-positive and fusion-negative MECs. Moreover, clinical follow-up studies revealed that fusion-positive patients had a significantly lower risk of local recurrence, metastases, or tumor-related death compared to fusion-negative patients (P = 0.0012). When considering tumor-related deaths only, the estimated median survival for fusion-positive patients was greater than 10 years compared to 1.6 years for fusion-negative patients. These findings suggest that molecularly classifying MECs on the basis of an MECT1-MAML2 fusion is histopathologically and clinically relevant and that the fusion is a useful marker in predicting the biological behavior of MECs.
Carcinoma ex pleomorphic adenoma (Ca-ex-PA) is an epithelial malignancy developing within a benign salivary gland pleomorphic adenoma (PA). Here we have used genome-wide, high-resolution array-CGH, and fluorescence in situ hybridization to identify genes amplified in double min chromosomes and homogeneously staining regions in PA and Ca-ex-PA and to identify additional genomic imbalances characteristic of these tumor types. Ten of the 16 tumors analyzed showed amplification/gain of a 30-kb minimal common region, consisting of the 5 0 -part of HMGA2 (encoding the three DNA-binding domains). Coamplification of MDM2 was found in nine tumors. Five tumors had cryptic HMGA2-WIF1 gene fusions with amplification of the fusion oncogene in four tumors. Expression analysis of eight amplified candidate genes in 12q revealed that tumors with amplification/rearrangement of HMGA2 and MDM2 had significantly higher expression levels when compared with tumors without amplification. Analysis of individual HMGA2 exons showed that the expression of exons 3-5 were substantially reduced when compared with exons 1-2 in 9 of 10 tumors with HMGA2 activation, indicating that gene fusions and rearrangements of HMGA2 are common in tumors with amplification. In addition, recurrent amplifications/gains of 1q11-q32.1, 2p16.1-p12, 8q12.1, 8q22-24.1, and 20, and losses of 1p21.3-p21.1, 5q23.2-q31.2, 8p, 10q21.3, and 15q11.2 were identified. Collectively, our results identify HMGA2 and MDM2 as amplification targets in PA and Ca-ex-PA and suggest that amplification of 12q genes (in particular MDM2), deletions of 5q23.2-q31.2, gains of 8q12.1 (PLAG1) and 8q22.1-q24.1 (MYC), and amplification of ERBB2 may be of importance for malignant transformation of benign PA.
We have previously shown that the PLAG1 gene on chromosome 8q12 is consistently rearranged in pleomorphic adenomas of the salivary glands with t(3;8)(p21;q12) translocations. The t(3;8) results in promoter swapping between the PLAG1 gene, which encodes a novel zinc ®nger protein, and the constitutively expressed gene for b-catenin (CTNNB1), a protein with roles in cell-cell adhesion and the WG/WNT signalling pathway. In order to assess the importance of other translocation partner genes of PLAG1, and their possible relationship to CTNNB1, we have characterized a second recurrent translocation, i.e. the t(5;8)(p13;q12). This translocation leads to ectopic expression of a chimeric transcript consisting of sequences from the ubiquitously expressed gene for the leukemia inhibitory factor receptor (LIFR) and PLAG1. As for the t(3;8), the fusions occurred in the 5'-noncoding regions of both genes, exchanging regulatory control elements while preserving the coding sequences. The results of the current as well as previous studies indicate that ectopic expression of PLAG1 under the control of promoters of distinct translocation partner genes is a general pathogenetic mechanism for pleomorphic adenomas with 8q12 aberrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.