The transcription factor gene MYB was identified recently as an oncogene that is rearranged/duplicated in some human leukemias. Here we describe a new mechanism of activation of MYB in human cancer involving gene fusion. We show that the t(6;9)(q22-23;p23-24) translocation in adenoid cystic carcinomas (ACC) of the breast and head and neck consistently results in fusions encoding chimeric transcripts predominantly consisting of MYB exon 14 linked to the last coding exon(s) of NFIB. The minimal common part of MYB deleted as the result of fusion was exon 15 including the 3 -UTR, which contains several highly conserved target sites for miR-15a/16 and miR-150 microRNAs. These microRNAs recently were shown to regulate MYB expression negatively. We suggest that deletion of these target sites may disrupt repression of MYB leading to overexpression of MYB-NFIB transcripts and protein and to activation of critical MYB targets, including genes associated with apoptosis, cell cycle control, cell growth/angiogenesis, and cell adhesion. Forced overexpression of miR-15a/16 and miR-150 in primary fusion-positive ACC cells did not significantly alter the expression of MYB as compared with leukemic cells with MYB activation/duplication. Our data indicate that the MYB-NFIB fusion is a hallmark of ACC and that deregulation of the expression of MYB and its target genes is a key oncogenic event in the pathogenesis of ACC. Our findings also suggest that the gain-offunction activity resulting from the MYB-NFIB fusion is a candidate therapeutic target.chromosome translocation ͉ fusion oncogene ͉ miRNA ͉ adenoid cystic carcinoma F usion genes are potent oncogenes resulting from chromosome rearrangements, in particular translocations. Most fusion genes identified thus far have been in hematological disorders and mesenchymal neoplasms, and only a few have been found in carcinomas (1). This paucity probably results from an inability to discover these rearrangements rather than from a true lack of such genes in carcinomas. The recent discovery that the majority of prostate cancers harbor ETS gene fusions (2) is in line with this reasoning. Finding as yet unidentified fusion oncogenes in other carcinomas could provide important insights into the molecular pathogenesis of these cancers and also might facilitate the development of new targeted therapies.We previously have identified a recurrent and tumor-specific t(6;9)(q22-23;p23-24) translocation in adenoid cystic carcinoma (ACC) of the head and neck (3). The translocation has been found as the sole cytogenetic anomaly in several cases, indicating that it is a primary rearrangement in this carcinoma.ACC has been known as a histologically distinctive neoplasm for nearly 150 years. It is among the most common carcinomas of the salivary glands (4) but also may arise in other exocrine glands, such as in the breast, and in the cervix, vulva, and tracheobronchial tree (5). ACC usually is an aggressive, although slowly growing, cancer with a long-term poor prognosis. Most patients (80-90%) with ACC ...
Adenoid cystic carcinoma (ACC) of the head and neck is a malignant tumor with poor long-term prognosis. Besides the recently identified MYB-NFIB fusion oncogene generated by a t(6;9) translocation, little is known about other genetic alterations in ACC. Using high-resolution, array-based comparative genomic hybridization, and massively paired-end sequencing, we explored genomic alterations in 40 frozen ACCs. Eighty-six percent of the tumors expressed MYB-NFIB fusion transcripts and 97% overexpressed MYB mRNA, indicating that MYB activation is a hallmark of ACC. Thirty-five recurrent copy number alterations (CNAs) were detected, including losses involving 12q, 6q, 9p, 11q, 14q, 1p, and 5q and gains involving 1q, 9p, and 22q. Grade III tumors had on average a significantly higher number of CNAs/tumor compared to Grade I and II tumors (P = 0.007). Losses of 1p, 6q, and 15q were associated with high-grade tumors, whereas losses of 14q were exclusively seen in Grade I tumors. The t(6;9) rearrangements were associated with a complex pattern of breakpoints, deletions, insertions, inversions, and for 9p also gains. Analyses of fusion-negative ACCs using high-resolution arrays and massively paired-end sequencing revealed that MYB may also be deregulated by other mechanisms in addition to gene fusion. Our studies also identified several down-regulated candidate tumor suppressor genes (CTNNBIP1, CASP9, PRDM2, and SFN) in 1p36.33-p35.3 that may be of clinical significance in high-grade tumors. Further, studies of these and other potential target genes may lead to the identification of novel driver genes in ACC.
Mucoepidermoid carcinoma is the most common salivary gland malignancy, and includes a spectrum of lesions ranging from non-aggressive low-grade tumors to aggressive high-grade tumors. To further characterize this heterogeneous group of tumors we have performed a comprehensive analysis of copy number alterations and CRTC1-MAML2 fusion status in a series of 28 mucoepidermoid carcinomas. The CRTC1-MAML2 fusion was detected by RT-PCR or fluorescence in situ hybridization in 18 of 28 mucoepidermoid carcinomas (64%). All 15 low-grade tumors were fusion-positive whereas only 3 of 13 high-grade tumors were fusion-positive. Highresolution array-based comparative genomic hybridization revealed that fusion-positive tumors had significantly fewer copy number alterations/tumor compared with fusion-negative tumors (1.5 vs 9.5; P ¼ 0.002). Twelve of 18 fusion-positive tumors had normal genomic profiles whereas only 1 out of 10 fusionnegative tumors lacked copy number alterations. The profiles of fusion-positive and fusion-negative tumors were very similar to those of low-and high-grade tumors. Thus, low-grade mucoepidermoid carcinomas had significantly fewer copy number alterations/tumor compared with high-grade mucoepidermoid carcinomas (0.7 vs 8.6; Po0.0001). The most frequent copy number alterations detected were losses of 18q12.2-qter (including the tumor suppressor genes DCC, SMAD4, and GALR1), 9p21.3 (including the tumor suppressor genes CDKN2A/B), 6q22.1-q23.1, and 8pter-p12.1, and gains of 8q24.3 (including the oncogene MAFA), 11q12.3-q13.2, 3q26.1-q28, 19p13.2-p13.11, and 8q11.1-q12.2 (including the oncogenes LYN, MOS, and PLAG1). On the basis of these results we propose that mucoepidermoid carcinoma may be subdivided in (i) low-grade, fusion-positive mucoepidermoid carcinomas with no or few genomic imbalances and favorable prognosis, (ii) high-grade, fusion-positive mucoepidermoid carcinomas with multiple genomic imbalances and unfavorable prognosis, and (iii) a heterogeneous group of high-grade, fusion-negative adenocarcinomas with multiple genomic imbalances and unfavorable outcome. Taken together, our studies indicate that molecular genetic analysis can be a useful adjunct to histologic scoring of mucoepidermoid carcinoma and may lead to development of new clinical guidelines for management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.