Cardiac pacemaker cells create rhythmic pulses that control heart rate; pacemaker dysfunction is a prevalent disorder in the elderly, but little is known about the underlying molecular causes. Popeye domain containing (Popdc) genes encode membrane proteins with high expression levels in cardiac myocytes and specifically in the cardiac pacemaking and conduction system. Here, we report the phenotypic analysis of mice deficient in Popdc1 or Popdc2. ECG analysis revealed severe sinus node dysfunction when freely roaming mutant animals were subjected to physical or mental stress. In both mutants, bradyarrhythmia developed in an age-dependent manner. Furthermore, we found that the conserved Popeye domain functioned as a high-affinity cAMP-binding site. Popdc proteins interacted with the potassium channel TREK-1, which led to increased cell surface expression and enhanced current density, both of which were negatively modulated by cAMP. These data indicate that Popdc proteins have an important regulatory function in heart rate dynamics that is mediated, at least in part, through cAMP binding. Mice with mutant Popdc1 and Popdc2 alleles are therefore useful models for the dissection of the mechanisms causing pacemaker dysfunction and could aid in the development of strategies for therapeutic intervention.
This review deals with the influence of serine/threonine-specific protein phosphatases on the function of ion channels in the plasma membrane of excitable tissues. Particular focus is given to developments of the past decade. Most of the electrophysiological experiments have been performed with protein phosphatase inhibitors. Therefore, a synopsis is required incorporating issues from biochemistry, pharmacology, and electrophysiology. First, we summarize the structural and biochemical properties of protein phosphatase (types 1, 2A, 2B, 2C, and 3-7) catalytic subunits and their regulatory subunits. Then the available pharmacological tools (protein inhibitors, nonprotein inhibitors, and activators) are introduced. The use of these inhibitors is discussed based on their biochemical selectivity and a number of methodological caveats. The next section reviews the effects of these tools on various classes of ion channels (i.e., voltage-gated Ca(2+) and Na(+) channels, various K(+) channels, ligand-gated channels, and anion channels). We delineate in which cases a direct interaction between a protein phosphatase and a given channel has been proven and where a more complex regulation is likely involved. Finally, we present ideas for future research and possible pathophysiological implications.
Reversible protein phosphorylation is an essential regulatory mechanism in many cellular functions. In contrast to protein kinases, the role and regulation of protein phosphatases has remained ambiguous. To address this issue, we generated transgenic mice that overexpress the catalytic subunit ␣ of protein phosphatase 2A (PP2A) (PP2Ac␣) in the heart driven by the ␣-myosin heavy chain promoter. Overexpression of the PP2Ac␣ gene in the heart led to increased levels of the transgene both at RNA and protein levels. This was accompanied by a significant increase of PP2A enzyme activity in the myocardium. Morphological analysis revealed isles of necrosis and fibrosis. The phosphorylation state of phospholamban, troponin inhibitor, and eukaryotic elongation factor 2 was reduced significantly. The expression of junctional (calsequestrin) and free SR proteins (SERCA and phospholamban) was not altered. Whereas no increase in morbidity or mortality was noted, transgenic mice developed cardiac hypertrophy and reduced contractility of the heart, as well as cardiac dilatation as shown by biplane echocardiography. Taken together, these findings are indicative of the fundamental role of PP2A in cardiac function and imply that disturbances in protein phosphatases expression and activity may cause or aggravate the course of cardiac diseases.
Increased CaM kinase activity in hearts from patients with dilated cardiomyopathy could play a role in the abnormal Ca2+ handling of the SR and heart muscle cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.