Ageing is the predominant risk factor for cardiovascular diseases and contributes to a significantly worse outcome in patients with acute myocardial infarction. MicroRNAs (miRNAs) have emerged as crucial regulators of cardiovascular function and some miRNAs have key roles in ageing. We propose that altered expression of miRNAs in the heart during ageing contributes to the age-dependent decline in cardiac function. Here we show that miR-34a is induced in the ageing heart and that in vivo silencing or genetic deletion of miR-34a reduces age-associated cardiomyocyte cell death. Moreover, miR-34a inhibition reduces cell death and fibrosis following acute myocardial infarction and improves recovery of myocardial function. Mechanistically, we identified PNUTS (also known as PPP1R10) as a novel direct miR-34a target, which reduces telomere shortening, DNA damage responses and cardiomyocyte apoptosis, and improves functional recovery after acute myocardial infarction. Together, these results identify age-induced expression of miR-34a and inhibition of its target PNUTS as a key mechanism that regulates cardiac contractile function during ageing and after acute myocardial infarction, by inducing DNA damage responses and telomere attrition.
Atrial fibrillation (AF) is a common arrhythmia that is difficult to treat. Anti-arrhythmic drug therapy, to maintain sinus-rhythm, is limited by inadequate efficacy and potentially serious adverse effects. There is increasing interest in novel therapeutic approaches that target AF-substrate development. Recent trials suggest that angiotensin converting-enzyme (ACE)-inhibitors and angiotensin-receptor blockers (ARBs) may be useful, particularly in patients with left ventricular hypertrophy or failure. The clinical potential and mechanisms of this approach are under active investigation. Angiotensin-II is involved in remodelling and may have direct electrophysiological actions. Experimental studies show protection from atrial structural and possibly electrical remodelling with ACE-inhibitors and ARBs, as well as potential effects on cardiac ion-channels. This article reviews information pertaining to the clinical use and mechanism of action of ACE-inhibitors and ARBs in AF. A lack of prospective randomized double-blind trials data limits their application in AF patients without another indication for their use, but studies under way may alter this in the near future. This exciting field of investigation may lead to significant improvements in therapeutic options for AF patients.
Pulmonary vein (PV) cardiomyocytes play an important role in atrial fibrillation; however, little is known about their specific cellular electrophysiological properties. We applied standard microelectrode recording and whole-cell patch-clamp to evaluate action potentials and ionic currents in canine PVs and left atrium (LA) free wall. Resting membrane potential (RMP) averaged -66 +/- 1 mV in PVs and -74 +/- 1 mV in LA (P < 0.0001) and action potential amplitude averaged 76 +/- 2 mV in PVs vs. 95 +/- 2 mV in LA (P < 0.0001). PVs had smaller maximum phase 0 upstroke velocity (Vmax: 98 +/- 9 vs. 259 +/- 16 V s(-1), P < 0.0001) and action potential duration (APD): e.g. at 2 Hz, APD to 90% repolarization in PVs was 84 % of LA (P < 0.05). Na+ current density under voltage-clamp conditions was similar in PV and LA, suggesting that smaller Vmax in PVs was due to reduced RMP. Inward rectifier current density in the PV cardiomyocytes was approximately 58% that in the LA, potentially accounting for the less negative RMP in PVs. Slow and rapid delayed rectifier currents were greater in the PV (by approximately 60 and approximately 50 %, respectively), whereas transient outward K+ current and L-type Ca2+ current were significantly smaller (by approximately 25 and approximately 30%, respectively). Na(+)-Ca(2+)-exchange (NCX) current and T-type Ca2+ current were not significantly different. In conclusion, PV cardiomyocytes have a discrete distribution of transmembrane ion currents associated with specific action potential properties, with potential implications for understanding PV electrical activity in cardiac arrhythmias.
Background-Antiarrhythmic management of atrial fibrillation (AF) remains a major clinical challenge. Mechanismbased approaches to AF therapy are sought to increase effectiveness and to provide individualized patient care. K 2P 3.1 (TASK-1 [tandem of P domains in a weak inward-rectifying K + channel-related acid-sensitive K + channel-1]) 2-poredomain K + (K 2P ) channels have been implicated in action potential regulation in animal models. However, their role in the pathophysiology and treatment of paroxysmal and chronic patients with AF is unknown. Methods and Results-Right and left atrial tissue was obtained from patients with paroxysmal or chronic AF and from control subjects in sinus rhythm. Ion channel expression was analyzed by quantitative real-time polymerase chain reaction and Western blot. Membrane currents and action potentials were recorded using voltage-and current-clamp techniques. K 2P 3.1 subunits exhibited predominantly atrial expression, and atrial K 2P 3.1 transcript levels were highest among functional K 2P channels. K 2P 3.1 mRNA and protein levels were increased in chronic AF. Enhancement of corresponding currents in the right atrium resulted in shortened action potential duration at 90% of repolarization (APD 90 ) compared with patients in sinus rhythm. In contrast, K 2P 3.1 expression was not significantly affected in subjects with paroxysmal AF. Pharmacological K 2P 3.1 inhibition prolonged APD 90 in atrial myocytes from patients with chronic AF to values observed among control subjects in sinus rhythm. Conclusions-Enhancement of atrium-selective K 2P 3.1 currents contributes to APD shortening in patients with chronic AF, and K 2P 3.1 channel inhibition reverses AF-related APD shortening. These results highlight the potential of K 2P 3.1 as a novel drug target for mechanism-based AF therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.