In the past decades, several feedback mechanisms for longitudinal acoustic modes in gas turbine combustors have been investigated. These mechanisms are successfully used in predictive tools like acoustic network models to analyze low-frequency instabilities in combustion systems. In contrast, little is known about high-frequency oscillations — fluctuations at several kHz. Most theories are derived from experimental investigations of afterburners in the 1950s and 1960s, indicating an interaction of vortex shedding, fluctuating vorticity and heat release. In this work a different feedback mechanism for high-frequency oscillations in cylindrical flame tubes related to transverse acoustic modes is suggested and analysed: Transverse acoustic pressure fluctuations are linked to an oscillating velocity field. A time-dependent but periodic displacement field can be derived from these velocity fluctuations. The model assumes that the zone of heat release is displaced by the velocity fluctuations. Pressure oscillations and periodically deflected heat release lead to a contribution to the Rayleigh criterion without fluctuations in the global heat release. This effect is studied in a circular cross section presuming a circular zone of heat release. Expressions for the displacement of the flame front are derived from the analytical solution of the wave equation in cylindrical geometries assuming a quiescent medium, constant density and speed of sound. The Rayleigh criterion is integrated and growth rates are evaluated whereas damping effects are neglected as they are not subject to this study. Characteristics of the model are assessed and compared to experimental observations to check the validity and the applicability of the theory.
Flame dynamics related to high-frequency instabilities in gas turbine combustors are investigated using experimental observations and numerical simulations. Two different combustor types are studied, a premix swirl combustor (experiment) and a generic reheat combustor (simulation). In both cases, a very similar dynamic behaviour of the reaction zone is observed, with the appearance of transverse displacement and coherent flame wrinkling. From these observations, a model for the thermoacoustic feedback linked to transverse modes is proposed. The model splits heat release rate fluctuations into distinct contributions that are related to flame displacement and variations of the mass burning rate. The decomposition procedure is applied on the numerical data and successfully verified by comparing a reconstructed Rayleigh index with the directly computed value. It thus allows to quantify the relative importance of various feedback mechanisms for a given setup.
Intense research on the thermoacoustic stability of premixed gas turbine combustors in the past two decades has led to an improved understanding of instabilities of longitudinal modes in the sub-kHz range and predictive tools for thermoacoustic stability analysis have also been developed. Circumferential modes in annular combustors have been studied in the past as well, even though to a much lower extent due to the high experimental effort. Combined experimental-numerical methods for the low-frequency regime (i.e. acoustically compact flames) are widely used. However, such experimental and numerical approaches with predictive capability have to be developed to also address the high-frequency (HF) regime. An experimental study of HF thermoacoustic coupling is presented in this paper. A fully premixed swirl-stabilized flame at atmospheric condition in a cylindrical combustion chamber is investigated. The test rig is equipped with several dynamic pressure transducers to identify and reconstruct the acoustic field in the combustion chamber. Planar information about the flame front location is obtained from Mie-scattering and the flow field is measured with particle image velocimetry (PIV). In the tests the first transverse mode of the combustion chamber exhibits instability for a particular operating condition, which leads to sustained limit-cycle pulsations. Mie-scattering images reveal periodic vortex shedding at the outlet of the burner. PIV results provide quantitative information on the strength of these coherent shear layer vortices.
Thermoacoustic instabilities are a major concern in gas turbine combustion chambers today. In the last decades research interest in thermoacoustic instabilities has focused on low frequencies. The feedback mechanisms related to longitudinal modes are for the most part understood. Transverse modes, though, have not been studied to a large extent in the past. However, interest has been rising in the last few years. But little is known about the thermoacoustic feedback of high-frequency instabilities. Our previous publications characterized the flow and the flame at the eigenfrequency of high-frequency instabilities. There, a feedback mechanism was derived from the experimental results and discussed: the acoustic velocity leads to a periodic displacement of the flame resulting in a positive contribution to the Rayleigh criterion. Thus, the thermoacoustic feedback couples to the acoustic velocity, but not to the pressure or a periodic vortex formation. Different means can be derived from the model to influence high-frequency instabilities: Helmholtz dampers are used to shift the onset of instabilities to increased thermal power. With loudspeakers naturally stable operating points are excited. Stopping the excitation and evaluating the signal, decay rates are analyzed. Decay rates — i.e. stability margins — are compared for different operating conditions. Switching from perfect premixing to technical premixing, the radial profile of the fuel-to-air ratio can be changed. The influence of a lean core flow compared to a homogeneous mixture on the feedback is investigated and its impact on the instabilities is compared to the model. The observations reflect, what is predicted by the model. Velocity coupling, at least a significant part of the feedback mechanism for transverse high-frequency instabilities, is supported by the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.