We have demonstrated previously that local, adenoviral-mediated gene transfer of viral IL-10 to a single joint of rabbits and mice with experimental arthritis can suppress disease in both the treated and untreated contralateral joints. This contralateral effect is mediated in part by APCs able to traffic from the treated joint to lymph nodes as well as to untreated joints. Moreover, injection of dendritic cells (DC) genetically modified to express IL-4 or Fas ligand was able to reverse established murine arthritis. To examine the ability of exosomes derived from immunosuppressive DCs to reduce inflammation and autoimmunity, murine models of delayed-type hypersensitivity and collagen-induced arthritis were used. In this study, we demonstrate that periarticular administration of exosomes purified from either bone marrow-derived DCs transduced ex vivo with an adenovirus expressing viral IL-10 or bone marrow-derived DCs treated with recombinant murine IL-10 were able to suppress delayed-type hypersensitivity responses within injected and untreated contralateral joints. In addition, the systemic injection of IL-10-treated DC-derived exosomes was able suppress the onset of murine collagen-induced arthritis as well as reduce severity of established arthritis. Taken together, these data suggest that immature DCs are able to secrete exosomes that are involved in the suppression of inflammatory and autoimmune responses. Thus DC-derived exosomes may represent a novel, cell-free therapy for the treatment of autoimmune diseases.
Intra-articular expression of antagonists of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in arthritic rabbit knee and mouse ankle joints by direct adenoviral-mediated intraarticular delivery results in amelioration of disease pathology in both the treated and contralateral untreated joints. Previous experiments suggest that direct adenoviral infection of resident antigen-presenting cells (APCs) and subsequent traveling of these cells to other sites of inflammation and lymph nodes might be responsible for this "contralateral effect." To determine whether genetic modification of APCs is required for the contralateral effect, we have used an ex vivo approach utilizing genetically modified fibroblasts to express IL-1 receptor antagonist protein (IL-1Ra) and soluble TNF-alpha receptor (sTNFR) locally in arthritic joints. Retroviral vectors carrying IL-1Ra, sTNFR-Ig, or both genes together were used to stably infect autologous rabbit fibroblasts that were then injected intra-articularly into arthritic rabbit knee joints. The intra-articular delivery of either IL-1Ra- or sTNFR-Ig-expressing fibroblasts was antiinflammatory and chondro-protective in both the injected and noninjected contralateral joints. In addition, we demonstrate that the co-delivery of both antagonists in combination results in a synergistic effect in disease amelioration in both the treated and nontreated joints. These ex vivo results suggest that trafficking of vector-modified inflammatory cells is not the main mechanism responsible for the observed distal spread of the therapeutic effect. Moreover, the results demonstrate that local, ex vivo gene therapy for arthritis could be effective in blocking pathologies within untreated, distant arthritic joints.
The ability of phiC31 integrase to facilitate genomic integration in synovial cells and increase transgene expression in the rabbit synovium suggests that, in combination with more efficient DNA delivery methods, this integrase system could be beneficial for treatment of rheumatoid arthritis and other joint disorders.
We have demonstrated previously that local, adenoviralmediated gene transfer of vIL-10 to a single joint of rabbits and mice with experimental arthritis can suppress disease in both the treated and untreated contralateral joints. These therapeutic effects observed in distant untreated joints following local intra-articular gene delivery have been termed the 'contralateral effect'. To begin to understand the underlying immunologic mechanism that confers this effect, a dualantigen model of antigen-induced arthritis (AIA) in rabbit knee joints was utilized. Rabbits were immunized against two antigens, ovalbumin and keyhole limpet hemocyanin, and AIA generated by intra-articular injection of each antigen into contralateral knees. Intra-articular adenovirus-mediated gene transfer of vIL-10 significantly reduced intra-articular leukocytosis and cartilage matrix degradation, while preserving near normal levels of cartilage matrix synthesis within treated joints. However, no antiarthritic effect was conferred in the contralateral control joints that received only a marker gene, in contrast to the results seen in a single-antigen AIA model. These results suggest that the distant antiarthritic effects associated with local gene delivery to joints are antigen-specific, and not due to vIL-10-induced generalized immunosuppression of the animal.
The use of nonviral delivery systems results in transient gene expression, in part because of the low efficiency of DNA integration. Previously, vectors based on transposon systems such as Sleeping Beauty have been shown to be able to increase stable transfection efficiencies in cell culture and in animal models. Himar1, a reconstructed active transposon belonging to the Tc1/mariner superfamily, also has been used as a vector for stable gene delivery, but the rate of transposition after transfection is low. In this paper, we evaluate the potential of the hyperactive Himar1 transposase C9, in combination with the Himar1 inverted repeat transposon, as a gene delivery vector. The C9 transposase is a hyperactive mutant of Himar1 with two amino acid substitutions, Q131R and E137K, that result in an increase in activity relative to wild type. Here we demonstrate that cotransfection of the C9 transposase with a Himar1-based vector increases the frequency of stable gene expression in human cells in a transposase concentration-dependent manner. In addition, we establish that C9 transposase mediates integration of the transgene in mammalian cells at a frequency similar to that of Sleeping Beauty under some of the conditions tested. Last, we show significantly higher levels of reporter gene expression in vivo in mouse liver and in synovium of rabbit knee joints after injection of the transposon plasmid expressing the transgene and the C9 transposase. These data suggest that vectors based on the Himar1 transposable element, in conjunction with the hyperactive mutant transposase C9, may be suitable vectors for gene therapy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.