Mitochondria are central organelles for cellular metabolism. In cancer cells, mitochondrial oxidative phosphorylation (OXPHOS) dysfunction has been shown to promote migration, invasion, metastization and apoptosis resistance. With the purpose of analysing the effects of OXPHOS dysfunction in cancer cells and the molecular players involved, we generated cybrid cell lines harbouring either wild-type (WT) or mutant mitochondrial DNA (mtDNA) [tRNAmut cybrids, which harbour the pathogenic A3243T mutation in the leucine transfer RNA gene (tRNAleu)]. tRNAmut cybrids exhibited lower oxygen consumption and higher glucose consumption and lactate production than WT cybrids. tRNAmut cybrids displayed increased motility and migration capacities, which were associated with altered integrin-β1 N-glycosylation, in particular with higher levels of β-1,6-N-acetylglucosamine (GlcNAc) branched N-glycans. This integrin-β1 N-glycosylation pattern was correlated with higher levels of membrane-bound integrin-β1 and also with increased binding to fibronectin. When cultured in vitro, tRNAmut cybrids presented lower growth rate than WT cybrids, however, when injected in nude mice, tRNAmut cybrids produced larger tumours and showed higher metastatic potential than WT cybrids. We conclude that mtDNA-driven OXPHOS dysfunction correlates with increased motility and migration capacities, through a mechanism that may involve the cross talk between cancer cell mitochondria and the extracellular matrix.
Somatic mutations in GNAQ gene were described as being the main oncogenic activation in uveal melanomas, whereas mutations in BRAF gene have been described as a key genetic alteration that contributes to skin melanoma development. We have previously reported differential activation of the MAPK and AKT/mTOR signalling pathways in uveal and skin melanomas harbouring, respectively, GNAQ and BRAF mutations. The aim of this work was to compare the functional effect of GNAQ and BRAF mutations in mTOR and MAPK pathway activation, cell proliferation and apoptosis. In this work, we performed transient transfection of HEK293 cells with BRAFWT, BRAFV 600E, GNAQWT, GNAQQ209P and GNAQQ209L vectors. We treated melanoma cell lines displaying different BRAF and GNAQ mutational status with the mTOR inhibitor RAD001 and with the MEK1/2 inhibitor U0126 and evaluated the effects in the growth of the cell lines and in mTOR and MAPK pathway effectors expression. At variance with the significant increase in the level of pmTOR Ser2448 and pS6 Ser235/236 proteins observed in cells transfected with BRAF vectors, no significant alteration in mTOR pathway effectors was observed in cells transfected with the three GNAQ expressing vectors. Also, GNAQ overexpression enhances Stat3 activation, which might mediate GNAQ oncogenic effects. None of the vectors led to significant differences in proliferation or apoptosis in the transfected cell lines. Cell lines harbouring a BRAF mutation were more sensitive to RAD001 treatment. U0126 leads to the reduction of MAPK and mTOR pathways activation in all cell lines tested. Our results indicate that GNAQ and BRAF activation drive distinct intracellular signalling pathways that may be useful for therapeutic decisions in human melanomas.
We would like to report a genetic screening of SDHB, SDHC, SDHD and SDHAF2 genes (hereafter abbreviated to SDHx) in patients with paragangliomas (PGL) and phaeochromocytomas (PCC) from northern Portugal.PGL and PCC are neuroendocrine tumours that can be caused by heterozygous germline loss-of-function mutations in SDHx genes (Gimenez-Roqueplo et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.