Olive pomace, an olive oil processing byproduct, can be upcycled and meet the current demand for natural and sustainable food ingredients. In this work, a patented process was used to obtain a functional ingredient from different olive pomaces. The nutritional, chemical and antioxidant profiles, as well as the antimicrobial activity against S. aureus, E. coli and C. albicans, were investigated for the first time. The amount of phenolics ranged between 3.1 and 3.8 g gallic acid eq./100 g in all samples and flavonoids between 2.0 and 3.2 g catechin eq/100 g. No significant differences were found regarding the antioxidant activity. The total fat varied between 5 and 11%, α-tocopherol being the major vitamer and oleic acid the main fatty acid. The protein and ash contents were 1–4% and 10–17%, respectively. The functional ingredient with a higher hydroxytyrosol content (220 mg/100 g) also presented the best minimal inhibitory concentration against the tested bacteria. No activity against C. albicans was verified. This new functional ingredient presents the potential to be used as a natural preservative or as a nutritional profile enhancer. Moreover, it can be an advantageous ingredient in food products, since it comprises specific lipid and hydrophilic bioactive compounds usually not present in other plant extracts.
Olive pomace is a by-product from olive oil production that can be further processed to obtain olive pomace paste. In this work, the influence of different time/temperature binomials (65 °C/30 min; 77 °C/1 min; 88 °C/15 s; and 120 °C/20 min) on the nutritional quality, chemical composition, and efficiency on control/elimination of natural microbial load of olive pomace paste was ascertained. The treatments significantly impacted the contents of ash, fat, vitamin E, phenolics (including hydroxytyrosol), flavonoids, and antioxidant activity, but not the fatty acids profile. The binomial 88 °C/15 s showed the greatest potential since it better preserved the phytochemical and antioxidant properties as well as the protein and fiber contents. This binomial is also faster and easy to be implemented at an industrial level, allowing the obtention of a safe functional ingredient to satisfy consumers’ demands for novel sustainable products, simultaneously, responding to food safety and food security concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.