Water-based detergent systems offer several advantages, over organic solvents, for the cleaning of cultural heritage artifacts in terms of selectivity and gentle removal of grime materials or aged varnish, which are known to alter the readability of the painting. Unfortunately, easel paintings present specific characteristics that make the usage of water-based systems invasive. The interaction of water with wood or canvas support favors mechanical stresses between the substrate and the paint layers leading to the detachment of the pictorial layer. In order to avoid painting loss and to ensure a fine control (layer by layer) of grime removal, water-based cleaning systems have been confined into innovative chemical hydrogels, specifically designed for cleaning water-sensitive cultural heritage artifacts. The synthesized hydrogels are based on semi-interpenetrating chemical poly(2-hydroxyethyl methacrylate)/poly(vinylpyrrolidone) networks with suitable hydrophilicity, water retention properties, and required mechanical strength to avoid residues after the cleaning treatment. Three different compositions were selected. Water retention and release properties have been studied by quantifying the amount of free and bound water (from differential scanning calorimetry); mesoporosity was obtained from scanning electron microscopy; microstructure from small angle X-ray scattering. To demonstrate both the efficiency and versatility of the selected hydrogels in confining and modulating the properties of cleaning systems, a representative case study is presented.
The removal of aged varnishes from the surface of easel paintings using the common conservation practice (i.e., by means of organic solvents) often causes pigment leaching, paint loss, and varnish redeposition. Recently, we proposed an innovative cleaning system based on semi-interpenetrated polymer networks (SIPNs), where a covalently cross-linked poly(hydroxyethyl methacrylate), pHEMA, network is interpenetrated by linear chains of poly(vinylpyrrolidone), PVP. This chemical gel, simply loaded with water, was designed to safely remove surface dirt from water-sensitive artifacts. Here, we modified the SIPN to confine complex cleaning fluids, able to remove aged varnishes. These complex fluids are 5-component water-based nanostructured systems, where organic solvents are partially dispersed as nanosized droplets in a continuous aqueous phase, using surfactants. The rheological behavior of the SIPN and the nanostructure of the fluids loaded into the gel were investigated, and the mechanical behavior of the gel was optimized by varying both the cross-linking density and the polymer concentration. Once loaded with the complex fluids, the hydrogels maintained their structural and mechanical features, while the complex fluids showed a decrease in the size of the dispersed solvent droplets. Two challenging case studies have been selected to evaluate the applicability of the SIPN hydrogels loaded with the complex fluids. The first case study concerns the removal of a surface layer composed by an aged brown resinous patina from a wood panel, the second case study concerns the removal of a homogeneous layer of yellowed varnish from a watercolor on paper. The results show that the confinement of complex fluids into gels allowed unprecedented removal of varnishes from artifacts overcoming the limitations of traditional cleaning methods.
Gels are particularly useful for the cleaning of works of art, as they allow the controlled delivery of cleaning fluids on solvent-sensitive substrates such as easel paintings. Owing to the presence of covalent cross-links between the polymer chains, chemical gels exhibit mechanical properties that allow their easy handling and their residue-free removal from artistic surfaces after the cleaning intervention. Organogels based on the crosslinking of methyl methacrylate (MMA) can be prepared as loaded with solvents for the controlled removal of unwanted layers from the surface of canvas paintings. Here, we propose MMA-based organogels obtained by solubilizing MMA in pure organic solvents (e.g., ethyl acetate, butyl acetate and ketones) and using a dimethacrylate cross-linker. The uptake/release behavior of the gels has been investigated, and their mesoporosity has been characterized through small-angle X-ray scattering. Finally, the gels have been used for the removal of historical varnishes from canvas painting samples, checking the absence of gel residues with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.