This work demonstrates an integrated multimode interferometer (MMI) based on a fully polymeric platform and optimized for visible range operation. The dimensions of a 2×2 MMI are first calculated analytically and simulated using finite elements method. The devices are manufactured using two layers of negative tone photoresists. The top layer is patterned by e-beam lithography demonstrating the adaptability of this material, naturally designed to respond to UV radiation. Fabrication tolerance was smaller than 100 nm. Devices were optically characterized with a 635 nm input source and the best performance for a 3 dB power splitter was found at an interferometric cavity dimension of 10.5 × 190.68 µm. Other interferometric lengths were characterized to establish a process design kit that allows future use of this platform in more complex photonic integrated circuits architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.