The effects of a series of diacylglycerols (DAGs) with varying acyl chain lengths and degree of unsaturation on the activity of cobra venom, bee venom, and pig pancreatic phospholipases A2 (PL-A2S) were studied using two lipid substrates: dipalmitoylphosphatidylcholine (DPPC) or bovine liver phosphatidylcholine (BL-PC). The activities of the phospholipases critically depended on the chain length and degree of unsaturation of the added DAGs and on the chemical composition of the substrate. The effects of DAGs on cobra or bee venom PL-A2S were similar, but significantly different from the pig pancreatic PL-A2. The data, taken together with our previous NMR studies on physicochemical effects of these DAGs on lipid bilayer structure [De Boeck, H., & Zidovetzki, R. (1989) Biochemistry 28, 7439; (1992) Biochemistry 31, 623], allowed detailed correlation of the type of a bilayer perturbation induced by DAG with the activation or inhibition of the phospholipase on the same system. In general, the activation of the phospholipases correlated with the DAG-induced defects of the lipid bilayer structure. The results, however, argue against general designation of DAGs as "activators" or "inhibitors" of PL-A2S. Thus, for example, diolein activated phospholipases with the BL-PC lipid substrate, but inhibited them with the DPPC substrate. Dihexanoylglycerol and dioctanoylglycerol inhibited pig pancreatic PL-A2 with both lipid substrates and inhibited cobra or been venom PL-A2 with the DPPC substrate, but activated the latter two enzymes with the BL-PC substrate. Longer-chain DAGs (C greater than 12), which induce lateral phase separation of the bilayers into the regions of different fluidities, activated all PL-A2S with both lipid substrates.(ABSTRACT TRUNCATED AT 250 WORDS)
Immunologic recovery from radiation injury was used to assess age-related loss of immunologic homeostasis. Mice were exposed to 500 rad to determine whether macrophages, T helper cells and/or T responder cells were responsible for the age-related delay in recovery of PHA-induced mitogenesis. Recovery of macrophages was determined by facilitation of macrophage-deficient cultures, recovery of T helper cells by interleukin 2 production, and recovery of T responder cells by incorporation of tritiated thymidine. The results showed that in old mice (a) macrophages are resistant to radiation and aging, (b) T helper cells recover completely from radiation, and (c) recovery is incomplete for T responder cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.