This study describes the retrospective lens dose calculation methods developed and applied within the European epidemiological study on radiation-induced lens opacities among interventional cardiologists. While one approach focuses on self-reported data regarding working practice in combination with available procedure-specific eye lens dose values, the second approach focuses on the conversion of the individual whole-body dose to eye lens dose. In contrast with usual dose reconstruction methods within an epidemiological study, a protocol is applied resulting in an individual distribution of possible cumulative lens doses for each recruited cardiologist, rather than a single dose estimate. In this way, the uncertainty in the dose estimate (from measurement uncertainty and variability among cardiologists) is represented for each individual. Eye lens dose and whole-body dose measurements have been performed in clinical practice to validate both methods, and it was concluded that both produce acceptable results in the framework of a dose-risk evaluation study. Optimal results were obtained for the dose to the left eye using procedure-specific lens dose data in combination with information collected on working practice. This method has been applied to 421 interventional cardiologists resulting in a median cumulative eye lens dose of 15.1 cSv for the left eye and 11.4 cSv for the right eye. From the individual cumulative eye lens dose distributions obtained for each cardiologist, maxima up to 9-10 Sv were observed, although with low probability. Since whole-body dose values above the lead apron are available for only a small fraction of the cohort and in many cases not for the entire working career, the second method has only been used to benchmark the results from the first approach. This study succeeded in improving the retrospective calculation of cumulative eye lens doses in the framework of radiation-induced risk assessment of lens opacities, but it remains dependent on self-reported information, which is not always reliable for early years. However, the calculation tools developed can also be used to make an assessment of the eye lens dose in current practice.
Medical staff in interventional procedures are among the professionals with the highest occupational doses. Active personal dosemeters (APDs) can help in optimizing the exposure during interventional procedures. However, there can be problems when using APDs during interventional procedures, due to the specific energy and angular distribution of the radiation field and because of the pulsed nature of the radiation. Many parameters like the type of interventional procedure, personal habits and working techniques, protection tools used and X-ray field characteristics influence the occupational exposure and the scattered radiation around the patient. In this paper, we compare the results from three types of APDs with a passive personal dosimetry system while being used in real clinical environment by the interventional staff. The results show that there is a large spread in the ratios of the passive and active devices.
Interventional cardiologists (ICs) are occupationally exposed to low or moderate doses of ionizing radiation from repeated exposures. It is not clear whether these occupational conditions may affect their eye lens. Therefore, the risk of radiation-induced cataract in the cohort of Polish interventional cardiologists is analyzed in this paper. Material and Methods: The study group consisted of 69 interventional cardiologists and 78 control individuals occupationally unexposed to ionizing radiation. The eye lens opacities were examined using a slit camera and evaluated with Lens Opacities Grading System III. Cumulative eye lens doses were estimated retrospectively using a questionnaire including data on occupational history. Results: The average cumulative dose to the left and right eye lens of the ICs was 224 mSv and 85 mSv, respectively. Nuclear opalescence and nuclear color opacities in the most exposed left eye were found in 38% of the ICS for both types, and in 47% and 42% of the controls, respectively. Cortical opacities were found in 25% of the ICS and 29% of the controls. Posterior subcapsular opacities were rare: about 7% in the ICs group and 6% in the control group. Overall, there was some, but statistically insignificant, increase in the risk for opacity in the ICs group, relative to the control group, after adjusting for the subjects' age, gender, smoking status and medical exposure (adjusted OR = 1.47, 95% CI: 0.62-3.59 for the pooled "any-eye any-type" opacity). There was also no evidence for an increased opacity risk with an increase in the dose. Conclusions: The study found no statistically significant evidence against the hypothesis that the risk of cataract in the group of the ICs occupationally exposed to low doses of ionizing radiation is the same as in the control group. Nevertheless, the adverse effect of ionizing radiation still cannot be excluded due to a relatively small study sample size.
In fluoroscopy guided interventional procedures, workers protect part of their body with personal shielding. In these situations, it is recommended to wear two personal dosemeters. A combination of the results of both dosemeters is used for a better estimate of the effective dose, while the dosemeter above the protective garment can help to assess the equivalent dose of the lens of the eye.When a personal dosemeter is worn above the protective apron the detected radiation scattered field changes this study analyses the changes in the response of 7 passive and 8 active personal dosemeters when they are placed above a lead or lead-equivalent garment for S-Cs and X-ray diagnostics qualities. Monte Carlo simulations are used to support the experimental results.It is found that for passive dosemeters, the influence on the dosemeter's response of the lead or lead equivalent layer was within the range 15-38% for the X-rays qualities. This effect is smaller, of the order of 10%, when lead-free garments are used and much smaller, within 1%-10% for most of the APDs used in the study.From these results it is concluded that when comparing passive and active dosemeters' measurements worn above a protection in interventional radiology, a difference of 20%-40% is expected. The effect is small when deriving the effective dose from double dosimetry algorithms but, that it can be of major importance in workplaces where eye lens monitoring is based on the use of the dosemeter worn above the protections.
This paper investigates over five decades of work practices in interventional cardiology, with an emphasis on radiation protection. The analysis is based on data from more than 400 cardiologists from various European countries recruited for a EURALOC study and collected in the period from 2014 to 2016. Information on the types of procedures performed and their annual mean number, fluoroscopy time, access site choice, x-ray units and radiation protection means used was collected using an occupational questionnaire. Based on the specific European data, changes in each parameter have been analysed over decades, while country-specific data analysis has allowed us to determine the differences in local practices. In particular, based on the collected data, the typical workload of a European cardiologist working in a haemodynamic room and an electrophysiology room was specified for various types of procedures. The results showed that when working in a haemodynamic room, a transparent ceiling-suspended lead shield or lead glasses are necessary in order to remain below the recommended eye lens dose limit of 20 mSv. Moreover, the analysis revealed that new, more complex cardiac procedures such as chronic total occlusion, valvuloplasty and pulmonary vein isolation for atrial fibrillation ablation might contribute substantially to annual doses, although they are relatively rarely performed. The results revealed that considerable progress has been made in the use of radiation protection tools. While their use in electrophysiology procedures is not generic, the situation in haemodynamic procedures is rather encouraging, as ceiling-suspended shields are used in 90% of cases, while the combination of ceiling shield and lead glasses is noted in more than 40% of the procedures. However, we find that still 7% of haemodynamic procedures are performed without any radiation protection tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.