Full-genome-sequence computational analyses of the SARS-coronavirus (CoV)-2 genomes allow us to understand the evolutionary events and adaptability mechanisms. We used population genetics analyses on human SARS-CoV-2 genomes available on 2 April 2020 to infer the mutation rate and plausible recombination events between the Betacoronavirus genomes in nonhuman hosts that may have contributed to the evolution of SARS-CoV-2. Furthermore, we localized the targets of recent and strong, positive selection during the first pandemic wave. The genomic regions that appear to be under positive selection are largely co-localized with regions in which recombination from nonhuman hosts took place. Our results suggest that the pangolin coronavirus genome may have contributed to the SARS-CoV-2 genome by recombination with the bat coronavirus genome. However, we find evidence for additional recombination events that involve coronavirus genomes from other hosts, i.e., hedgehogs and sparrows. We further infer that recombination may have recently occurred within human hosts. Finally, we estimate the parameters of a demographic scenario involving an exponential growth of the size of the SARS-CoV-2 populations that have infected European, Asian, and Northern American cohorts, and we demonstrate that a rapid exponential growth in population size from the first wave can support the observed polymorphism patterns in SARS-CoV-2 genomes.
The current coronavirus disease 2019 pandemic is caused by the SARS-CoV-2 virus and is still spreading rapidly worldwide. Full-genome-sequence computational analysis of the SARS-CoV-2 genome will allow us to understand the recent evolutionary events and adaptability mechanisms more accurately, as there is still neither effective therapeutic nor prophylactic strategy. In this study, we used population genetics analysis to infer the mutation rate and plausible recombination events that may have contributed to the evolution of the SARS-CoV-2 virus. Furthermore, we localized targets of recent and strong positive selection. The genomic regions that appear to be under positive selection are largely co-localized with regions in which recombination from non-human hosts appeared to have taken place in the past. Our results suggest that the pangolin coronavirus genome may have contributed to the SARS-CoV-2 genome by recombination with the bat coronavirus genome. However, we find evidence for additional recombination events that involve coronavirus genomes from other hosts, i.e., Hedgehog and Sparrow. Even though recombination events within human hosts cannot be directly assessed, due to the high similarity of SARS-CoV-2 genomes, we infer that recombinations may have recently occurred within human hosts using a linkage disequilibrium analysis. In addition, we employed an Approximate Bayesian Computation approach to estimate the parameters of a demographic scenario involving an exponential growth of the size of the SARS-CoV-2 populations that have infected European, Asian and Northern American cohorts, and we demonstrated that a rapid exponential growth in population size can support the observed polymorphism patterns in SARS-CoV-2 genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.