B.Tsai and J.M.Gilbert contributed equally to this workPolyoma virus (Py) and simian virus 40 (SV40) travel from the plasma membrane to the endoplasmic reticulum (ER) from where they enter the cytosol and then the nucleus to initiate infection. Here we demonstrate that speci®c gangliosides can serve as plasma membrane receptors for these viruses, GD1a and GT1b for Py and GM1 for SV40. Binding and¯otation assays were used to show that addition of these gangliosides to phospholipid vesicles allowed speci®c binding of the respective viruses. The crystal structure of polyoma VP1 with a sialic acid-containing oligosaccharide was used to derive a model of how the two terminal sugars (sialic acid-a2,3-galactose) in one branch of GD1a and GT1b are recognized by the virus. A rat cell line de®-cient in ganglioside synthesis is poorly infectible by polyoma and SV40, but addition of the appropriate gangliosides greatly facilitates virus uptake, transport to the ER and infection. Lipid binding sites for polyoma are shown to be present in rough ER membranes, suggesting that the virus travel with the ganglioside(s) from the plasma membranes to the ER.
The pathway of entry of polyomavirus (Py) has been investigated with glycolipid-deficient C6 cells and added ganglioside GD1a as a specific virus receptor. Unsupplemented C6 cells show a low basal level of infection but become highly infectable by Py following preincubation with the sialic acid-containing ganglioside GD1a (38). Addition of GD1a has no effect on the overall level of virus binding but mediates the internalization and transit of virus to the endoplasmic reticulum (ER). This pathway of entry is cholesterol and caveola dependent and requires intact microtubules as well as a dynamic state of the microfilament system. In contrast to vesicular transport of other cargo via glycolipids, Py particles do not appear to pass through the Golgi apparatus. Colcemid and brefeldin A block transport of the virus to the ER in GD1a-supplemented cells and lead to accumulation of virus in a caveolin-1-containing environment. Several features distinguish the efficient GD1a-mediated pathway of virus uptake from the less-efficient pathway of basal infection in C6 cells.
The nucleotide sequence of gene 6 encoding the rotavirus major capsid protein VP6 of EDIM strain (EW) was determined and compared to that of 20 previously reported strains with known subgroup specificities. Multiple alignments of amino acid sequences exhibited a high level of sequence conservation (87 to 99.2%). Site-specific mutagenesis experiments were undertaken to localize regions involved in subgroup specificity. Amino acid positions 305, 315, and a region 296-299 (or 301 for equine strain H-2) were identified as contributing to subgroup epitopes. A single amino acid mutation at position 305 or 315 was sufficient to change the subgroup specificity of EW VP6 protein from non I/II to subgroup I- or subgroup II-like, respectively. Mutation at these sites may be another important mechanism for subgroup variation, along with gene reassortment.
The pathways by which viruses enter cells are diverse, but in all cases, infection necessitates the transfer of the viral genome across a cellular membrane. Polyomavirus (Py) particles, after binding to glycolipid and glycoprotein receptors at the cell surface, are delivered to the lumen of the endoplasmic reticulum (ER). The nature and extent of virus disassembly in the ER, how the viral genome is transported to the cytosol and subsequently to the nucleus, and whether any cellular proteins are involved are not known. Here, we identify an ER-resident protein, Derlin-2, a factor implicated in the removal of misfolded proteins from the ER for cytosolic degradation, as a component of the machinery required for mouse Py to establish an infection. Inhibition of Derlin-2 function by expression of either a dominant-negative form of Derlin-2 or a short hairpin RNA that reduces Derlin-2 levels blocks Py infection by 50 to 75%. The block imposed by Derlin-2 inhibition occurs after the virus reaches the ER and can be bypassed by the introduction of Py DNA into the cytosol. These findings suggest a mode of Py entry that involves cytosolic access via the quality control machinery in the ER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.