A series of copper(I) pseudorotaxanes has been prepared from bis[2-(diphenylphosphino)phenyl] ether (POP) and macrocyclic phenanthroline ligands with different ring sizes (m30, m37, and m42). Variable-temperature studies carried out on the resulting [Cu(mXX)(POP)] (mXX = m30, m37, and m42) derivatives have revealed a dynamic conformational equilibrium due to the folding of the macrocyclic ligand. The absorption and luminescence properties of the pseudorotaxanes have been investigated in CHCl. They exhibit metal-to-ligand charge-transfer emission with photoluminescence quantum yields (PLQYs) in the range 20-30%. The smallest system [Cu(m30)(POP)] shows minimal differences in spectral shape and position compared to its analogues, suggesting a slightly distorted coordination environment. PLQY is substantially enhanced in poly(methyl methacrylate) films (∼40-45%). The study of emission spectra and excited-state lifetimes in powder samples as a function of temperature (78-338 K) reveals thermally activated delayed fluorescence, with sizable differences in the singlet-triplet energy gap compared to the reference compound [Cu(dmp)(POP)] (dmp = 2,9-dimethyl-1,10-phenanthroline) and within the pseudorotaxane series. The system with the largest ring ([Cu(m42)(POP)]) has been tested as emissive material in OLEDs and affords bright green devices with higher luminance and greater stability compared to [Cu(dmp)(POP)], which lacks the macrocyclic ring. This highlights the importance of structural factors in the stability of electroluminescent devices based on Cu(I) materials.
Two new pincer proligands, namely 5-(p-(N,N-diphenylamino)phenylethynyl)-1,3-di(2-pyridyl)benzene (HL 1) and trans-5-(p-(N,N-diphenylamino)styryl-1,3-di(2-pyridyl)benzene (HL 2) were prepared together with their N^C^N-coordinated cyclometallated platinum(II) complexes PtL 1 X (X ¼ Cl, NCS) and PtL 2 Cl. Both ligands are intensely luminescent in solution (quantum yields > 0.8). PtL 1 X complexes display high quantum yields in solution whereas that of PtL 2 Cl is very low due to the ease with which trans to cis isomerisation of the diphenylaminostyryl C]C bond occurs. Distinct sets of emission bands attributable to the cis and trans forms are observable in glass at 77 K, the assignments being supported by TD-DFT calculations. Organic light-emitting diodes (OLEDs) have been prepared using the new compounds as phosphorescent emitters. Remarkably, despite the inferior quantum yield of PtL 2 Cl in solution, the best electroluminescence quantum efficiencies are obtained with this complex, which emerges as an excellent candidate for the preparation of NIR-OLEDs.
The reaction of hydrated YbCl3 with potassium tribenzoylmethanide yields a new bimetallic tetranuclear Yb(3+)/K(+) assembly. This species not only possesses the longest excited state lifetime and quantum yield reported for the Yb(3+) diketonate family but is also suitable to be incorporated in NIR-OLEDs, whose performance outclasses any other reported lanthanoid-based device with NIR emission.
A squaraine dye functionalized with a bulky trialkoxy phenyl moiety through a flexible diamide linkage (GA-SQ) capable of undergoing self-assembly has been synthesized and fully characterized. Rapid cooling of a hot solution of GA-SQ to 0 °C results in self-assembled precipitates consisting of two types of nanostructures, rings and ill-defined short fibers. The application of ultrasound modifies the conditions for the supersaturation-mediated nucleation, generating only one kind of nuclei and prompting the formation of crystalline fibrous structures, inducing gelation of solvent molecules. The unique self-assembling behavior of GA-SQ under ultrasound stimulus has been investigated in detail by using absorption, emission, FT-IR, XRD, SEM, AFM and TEM techniques. These studies reveal a nucleation growth mechanism of the self-assembled material, an aspect rarely scrutinized in the area of sonication-induced gelation. Furthermore, in order to probe the effects of nanoscale substrates on the sonication-induced self-assembly, a minuscule amount of single-walled carbon nanotubes was added, which leads to acceleration of the self-assembly through a heterogeneous nucleation process that ultimately affords a supramolecular gel with nanotape-like morphology. This study demonstrates that self-assembly of functional dyes can be judiciously manipulated by an external stimulus and can be further controlled by the addition of carbon nanotubes.
The reaction of hydrated lanthanoid chlorides with tribenzoylmethane and an alkali metal hydroxide consistently resulted in the crystallization of neutral tetranuclear assemblies with the general formula [Ln(Ae⋅HOEt)(L)4 ]2 (Ln=Eu(3+) , Er(3+) , Yb(3+) ; Ae=Na(+) , K(+) , Rb(+) ). Analysis of the crystal structures of these species revealed a coordination geometry that varied from a slightly distorted square antiprism to a slightly distorted triangular dodecahedron, with the specific geometrical shape being dependent on the degree of lattice solvation and identity of the alkali metal. The near-infrared (NIR)-emitting assemblies of Yb(3+) and Er(3+) showed remarkably efficient emission, characterized by significantly longer excited-state lifetimes (τobs ≈37-47 μs for Yb(3+) and τobs ≈4-6 μs for Er(3+) ) when compared with the broader family of lanthanoid β-diketonate species, even in the case of perfluorination of the ligands. The Eu(3+) assemblies show bright red emission and a luminescence performance (τobs ≈0.5 ms, ${{\Phi}{{{\rm L}\hfill \atop {\rm Ln}\hfill}}}$≈35-37 %, ηsens ≈68-70 %) more akin to the β-diketonate species. The results highlight that the β-triketonate ligand offers a tunable and facile system for the preparation of efficient NIR emitters without the need for more complicated perfluorination or deuteration synthetic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.