Background Braking is a critical determinant of safe driving that depends on the integrity of cognitive and motor processes. Following stroke, both cognitive and motor capabilities are impaired to varying degrees. The current study examines the combined impact of cognitive and motor impairments on braking time in chronic stroke. Methods Twenty stroke survivors and 20 aged-matched healthy controls performed cognitive, motor, and simulator driving assessments. Cognitive abilities were assessed with processing speed, divided attention, and selective attention. Motor abilities were assessed with maximum voluntary contraction (MVC) and motor accuracy of the paretic ankle. Driving performance was examined with the braking time in a driving simulator and self-reported driving behavior. Results Braking time was 16% longer in the stroke group compared with the control group. The self-reported driving behavior in stroke group was correlated with braking time (r = − 0.53, p = 0.02). The stroke group required significantly longer time for divided and selective attention tasks and showed significant decrease in motor accuracy. Together, selective attention time and motor accuracy contributed to braking time (R2 = 0.40, p = 0.01) in stroke survivors. Conclusions This study provides novel evidence that decline in selective attention and motor accuracy together contribute to slowed braking in stroke survivors. Driving rehabilitation after stroke may benefit from the assessment and training of attentional and motor skills to improve braking during driving.
Braking is a critical determinant of safe driving that depends on the integrity of cognitive and motor processes. Following stroke, both cognitive and motor capabilities are impaired to varying degrees. The current study examines the combined impact of cognitive and motor impairments on braking time in chronic stroke. METHODS: Twenty stroke survivors and 20 aged-matched healthy controls performed cognitive, motor, and simulator driving assessments. Cognitive abilities were assessed with processing speed, divided attention, and selective attention. Motor abilities were assessed with maximum voluntary contraction (MVC) and motor accuracy of the paretic ankle. Driving performance was examined with the braking time in a driving simulator and self-reported driving behavior. RESULTS: Braking time was 16% longer in stroke group compared with the control group. The self-reported driving behavior in stroke group was correlated with braking time (r = -0.53, p = 0.02). The stroke group required significantly longer time for divided and selective attention task and showed significant decrease in motor accuracy. Together, selective attention time and motor accuracy contributed to braking time (R2 = 0.40, p = 0.01) in stroke survivors. CONCLUSIONS: This study provides novel evidence that decline in selective attention and motor accuracy together contribute to slowed braking in stroke survivors. Driving rehabilitation after stroke may benefit from the assessment and training of attentional and motor skills to improve braking during driving.
BACKGROUND: Braking is a critical determinant of safe driving that depends on the integrity of cognitive and motor processes. Following stroke, both cognitive and motor capabilities are impaired to varying degrees. The current study examines the combined impact of cognitive and motor impairments on braking time in chronic stroke. METHODS: Twenty stroke survivors and 20 aged-matched healthy controls performed cognitive, motor, and simulator driving assessments. Cognitive abilities were assessed with processing speed, divided attention, and selective attention. Motor abilities were assessed with maximum voluntary contraction (MVC) and motor accuracy of the paretic ankle. Driving performance was examined with the braking time in a driving simulator and self-reported driving behavior. RESULTS: Braking time was 16% longer in stroke group compared with the control group. The self-reported driving behavior in stroke group was correlated with braking time (r = -0.53, p = 0.02). The stroke group required significantly longer time for divided and selective attention task and showed significant decrease in motor accuracy. Together, selective attention time and motor accuracy contributed to braking time (R2 = 0.40, p = 0.01) in stroke survivors. CONCLUSIONS: This study provides novel evidence that decline in selective attention and motor accuracy together contribute to slowed braking in stroke survivors. Driving rehabilitation after stroke may benefit from the assessment and training of attentional and motor skills to improve braking during driving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.