Natural reservoirs of Yersinia (Y.) enterocolitica comprise different animal species, but little is known about the role of wild animals in the epidemiology of yersiniosis. The aim of the study was to evaluate the prevalence of Y. enterocolitica among game animals in Poland. The bio-serotypes and the pathogenicity markers of the analyzed isolates were determined. The experimental material comprised rectal swabs from 857 free-living animals hunter-harvested over a period of 2 years (2013–2014) in hunting districts across Poland. The isolates from bacteriological studies were confirmed by PCR and bio-serotyped based on the results of biochemical and agglutination tests. In the group of the 218 analyzed isolates of Y. enterocolitica, 133 were derived from wild boars, 70 from red deer, 11 from roe deer and 4 from fallow deer, and they accounted for 61.0%, 32.1%, 5.1% and 1.8% of all isolates, respectively. Bio-serotyping assays revealed that 91.7% of the examined isolates belonged to biotype 1A (200/218). The remaining 18 isolates belonged to bio-serotypes 1B/NI (3/218, 1.4%), 1B/O:8 (1/218, 0.5%), 2/NI (6/218, 2.8%), 2/O:27 (1/218, 0.5%), 2/O:3 (1/218, 0.5%), 2/O:9 (2/218, 0.9%), 3/NI (2/218, 0.9%), 4/O:3 (1/218, 0.5%) and 4/O:9 (1/218, 0.5%). The ail gene, a suggestive virulence gene for Y. enterocolitica, has been found in 30 isolates from 20 wild boars, in 6 isolates from red deer, and in 1 isolate from roe deer. Our study demonstrated that Y. enterocolitica is frequently isolated from game animals in Poland, which poses a risk of spreading these infectious agents to other animal species and humans.
Recently, a rapid increase in the resistance of pathogenic bacteria to antibiotics and chemotherapeutics admitted for use in aquaculture has been observed. This happens especially often in intensive breeding. The use of drugs in closed circuits is problematic because it can damage biological filters. Therefore, in recent years, there has been a growing interest in natural methods of combating pathogens. These include bacteriophages. The aim of the study was to determine the safety of the new BAFADOR® bacteriophage‐based preparation, its effect on selected immunological parameters and the effectiveness of prophylactic and therapeutic use after experimental infections with pathogenic bacteria Aeromonas hydrophila and Pseudomonas fluorescens. The use of BAFADOR® increased the activity of lysozyme, total protein level and immunoglobulin level. The level of ceruloplasmin in the rainbow trout serum remained unchanged regardless of the route of administration of the preparation. Potential killing activity and metabolic activity of spleen phagocytes and proliferation of pronephros lymphocytes were higher compared to the control group. Both therapeutic and prophylactic application of the preparation after mixed experimental infection of A. hydrophila and P. fluorescens limited the mortality of rainbow trout.
To meet the nutritional requirements of our growing population, animal production must double by 2050, and due to the exhaustion of environmental capacity, any growth will have to come from aquaculture. Aquaculture is currently undergoing a dynamic development, but the intensification of production increases the risk of bacterial diseases. In recent years, there has been a drastic development in the resistance of pathogenic bacteria to antibiotics and chemotherapeutic agents approved for use, which has also taken place in aquaculture. Consequently, animal mortality and economic losses in livestock have increased. The use of drugs in closed systems is an additional challenge as it can damage biological filters. For this reason, there has been a growing interest in natural methods of combating pathogens. One of the methods is the use of bacteriophages both for prophylactic purposes and therapy. This work summarizes the diverse results of the in vivo application of bacteriophages for the prevention and control of bacterial pathogens in aquatic animals to provide a reference for further research on bacteriophages in aquaculture and to compare major achievements in the field.
Yersinia ruckeri (Y. ruckeri) can cause mortalities that are contributing to substantial economic losses in the rainbow trout (Oncorhynchus mykiss) aquaculture sector. Because of its most characteristic clinical signs, the disease in rainbow trout caused by this pathogen is called enteric redmouth disease. Although it is considered to affect mainly salmonids, there are reports in the available literature of isolating this bacterium from other fish species, both clinically healthy and diseased. The aim of this study was to analyse the available data concerning yersiniosis in non‐salmonid fish. The analysed data indicate that Y. ruckeri is a threat not only to rainbow trout. Some of the affected species have high commercial importance and mortalities may contribute to high economic losses. The disease symptoms may not be specific and can be different from those characteristic for enteric redmouth in trout, which may lead to misdiagnosis. Collected information indicates that infection with Y. ruckeri should be taken into account in the diagnostic procedures not only in salmonids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.